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ABSTRACT. This article presents a deterministic mathematical model for the transmission dynamics of
Covid-19 from the reservoir to the people. The model system properties were analyzed, such as the feasi-
bility of the solutions, positivity of the state variables, and stability of the model equilibria—both local and
global equilibrium points. Also, the basic reproduction number, R0, was computed along with its sensitivity
to model parameters to identify the most persuading parameter, and the results proved that high values of
the parameters associated with the rate of controlling the infection out of human life and back to the reser-
voir will drastically minimize the spread rate of Covid-19 among people.
The local stability of disease-free equilibrium was determined through the trace and determinant of matrix
method. The disease-free equilibrium will be asymptotically stable if the tr(JE0)< 0 and det(JE0)> 0. The
disease-free and endemic equilibria were found to be globally stable when the R0 < 1 and R0 > 1 respec-
tively. The analysis of the numerical simulation for the model on various sets of parameters displayed that,
there is a strong noteworthy effects on the virulent if the effort of controlling the inffection is at the rate not
less than 50% to pull back the infection out of people to reservoir or vanishing.

Keywords: Asymptotic Stability, Covid-19, Deterministic, Dynamics, Reservoir-to-Human.

1 INTRODUCTION

Corona virus is caused by a mild severe respiratory illness which encompasses viruses along-
side non-segment, single-stranded and positive sense ribonucleic acid (RNA) genomes which
are transmitted when getting in contact with infected materials, for example, through respiratory
droplets. Symptoms of Coronavirus are fever, cough, the commonest one is low breathing (which
can lead to pneumonic and respiratory flop). There are some recent symptoms associated with the
present outbreak like headache, runny nose, body aches, fatigue, nausea, vomiting or diarrhea.
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2 DYNAMICS OF COVID-19 FROM RESERVOIR-TO-HUMAN

Covid-19 was discovered in China (Wuhan city) on 31st December, 2019 [27, 28]. The genomic
shows that SAR-COV-2 is phylogenetically related to severe acute respiratory syndrome like
(SARS-like) bat viruses [6].

The epidemiological characteristics of an outbreak of 2019 Novel Corona Virus Disease (Covid-
19) China 2020 stated that those who contacted Covid-19 have been traced to an animal and
seafood. Then, it was discovered that they might have probably got the virus transmitted from
those sources. In December 2019, new cases of pneumonic was noticed and from research, it
was discovered that the source is from Huanan Sea Food market [18, 26]. Also, in January 22,
2020, the source/link of the virus was also traced to group 2 of Beta-Corona virus known as
wild bats, and their life cycle step invoices; attachment and entry, replicate protein, transcription,
assembly and release. Due to the fast spreading of the Covid-19, 2,394,278 cases were announced
as confirmed cases as at April 19, 2020 and people were dying daily due to the disease (Covid-
19) [20].

In Africa as a whole, Covid-19 was first noticed on 25th Feb., 2020 through those who tested
positive for the disease and its importation was identified on 13th March, 2020 through Kenyan
who arrived from the USA. consequently, the death rate increased to 1100 and confirmed cases
of about 22,000 [28]. As for the first face of coronavirus outbreak the data gathered from about
1099 patient within 99 laboratory with Covid-19 from 552 hospital in 30 provinces of china on
Jan., 29,2020 shows that only 2% of the confirmed cases have link with animals while others
residing on visiting wuhan city [23].

The current Covid-19 pandemic which is caused by the highly contagious respiratory pathogen
SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) has already claimed close to
three million lives. SARS-CoV-2 is a zoonotic disease, which emerged from a bat reservoir and it
can infect a number of agricultural and companion animal species [10]. Some of commonest and
deadliest human diseases are caused by bacteria or viruses of animal origin. But understanding
how an epidemic began is essential to preventing further introductions to the human population.
The researchers [16, 25], stated that Coronaviridae is the family name which Covid-19 belong
and they usually split into alpha (α-cov), beta (β -cov), gamma (γ-cov) and delta (δ ). Alpha and
beta coronaviruses can easily infect humans and the one located in human is almost the same as
β -cov genius Beta-cov and SAR-cov-2 while MERS-COV is from lineage. How an infectious
disease crosses the animal-human barrier is a riddle that can take years to solve.

Mathematical models are very essential in order to have knowledge about the behaviour
of the disease and how to curtail it. Many researchers have worked in this area such as (
[7,11,12,13,14,21,24,29,32]). Ming et al [29] investing a novel Susceptible-Infected-Recovered
(SIR) epidemic model to present number of infected cases burdens and those on isolation
cases with those in Intensive care Unit (ICU). Tuan et al [32] studied a mathematical model,
offered Covid-19 transmission with caputo fractional-order derivative using Adam-Bashforth-
moulton apparel. Amirudh [11] investigated the transmission dynamics in predicting the Covid-
19 and described the outcome and difficulties of SIR (Susceptible-Infected-Recovered), SEIR
(Susceptible-Exposed-Infected-Recovered), etc. Likewise, Akhil et al [7] developed a mathe-
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matical model for Covid-19 dynamics where the population was divided into two groups, older
and younger which is applicable to the Covid-19 outbreaks in Spain and Italy. The disease-free
equilibrium and the basic reproductive number for each case was obtained. Hernandez-Vargas
and Velasco-Hernandez [24] considered different starting times of infection by proposed mathe-
matical models to represent SARS-CoV-2 dynamics in infected patients. Based on the target cell
limited model, the within-host reproductive number for SARS-CoV-2 which is consistent with
the broad values of human influenza infection. To this end, we have countless impetus to ap-
prehend the history, spread and means of controlling infection of Covid-19 and its transmission
characteristics from reservoir. This work is arranged as follows. Section 2 is about model formu-
lation and description of Corona virus existing from reservoir. In section 3, qualitative analysis,
sensitivity analysis and numerical simulation of the model was discussed. Finally, conclusion
and recommendations are given in the last section.

The tables below are the states variables and parameter employed in this article.

Table 1: State variables of the model

Variables Description
S(t) Number of susceptible human

Ep(t) Exposed human
Ip(t) Symptomatic infected human
TP(t) Testing those people that are exposed to the virus
Hh(t) Symptomatic people through human to human transmission
Fm(t) Symptomatic infected people to family member
Cc(t) Symptomatic infected patient to care centre (clinic centre)
Ap(t) Asymptomatic infected people
Rp(t) Removed/recovered people
W (t) Infection reservoir
N(t) Total number of human

2 MODEL FORMULATION

The transmission dynamics of Covid-19 infection, from reservoir to human population and back
to reservoir, are described in this section using a mathematical model

2.1 Model Description and Formulation

The model was prepared to portray the Covid-19 widespread interaction between reservoir and
human population, with the total population denoted by N(t), respectively. The total population
at time t > 0 was sub-divided into ten sub-population compartments. susceptible S(t), exposed
Ep(t); tested people Tp(t); infected Ip(t),human individuals Hh(t); family individual Fm(t), clinic
individual Cc(t) recovered individuals R(t), asymptomatic individuals Ap(t), reservoir W (t), so
that

N(t) = S+Ep +Tp + Ip +Hh +Fm +Cc +Rp +Ap +W.

Trends Comput. Appl. Math., 26 (2025), e01796
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4 DYNAMICS OF COVID-19 FROM RESERVOIR-TO-HUMAN

Table 2: Parameter symbols of the model

Parameter Description
∧p Human recruitment rate
β2 Transmission rate from Ip and Ap to S
β1 Transmission rate from W to S
δp Proportion of asymptomatic
γp Rate of spreading the infection within the human
γh Human transmission rate
γm Infection transmission rate within family
γc Rate of symptomatic individuals recovery due to caring
γ ′p Asymptomatic recovery rate
µA Rate at which asymptomatic infectious transfering infection from Ap to W
µp Rate at which symptomatic infectious transfering infection from Ip to W
ω ′

p Rate of progression from Ep to Ap ( 1
ω ′

p
: the latent period of people)

µ Natural death rate
θ Infection death rate
α Rate of testing the symptomatic infectious individuals
ε Rate at which virus leave the reservoir ( 1

ε
is the lifetime of the virus)

ωp Rate of progression from Ep to Ip ( 1
ωp

: the incubation period of people)

k The transmissibility multiple from Ap to that of Ip

Recruitment into the model is being considered in an open population with the idea of basic
S− I−R model in [3], then applying ordinary differential equations (ODE) system with bilinear
incidence. Note that, when an individual is in contact with any infected entity, the virus begins to
multiply within the cells. In the model, compartment of susceptible (S) build up by the quantity
∧p, where ∧p is the recruitment rate into S. The compartment decreases due to infection forces
denoted by the quantities β2S(Ip + kAp), β1SW , and µS, where β1 is the infection contact rate
from reservoir to susceptible and β2 is the infection contact rate from infectious compartment to
susceptible. Hence, rate of change of the susceptible compartment is given by

dS
dt

= ∧p −β2S(Ip + kAp)−β1SW −µS. (2.1)

Sub-population of exposed individuals increased by the quantities β2S(Ip + kAp) and β1SW ,
while it is further decreased by the quantities µEp, (1 − δp)ωpEp, and δpω ′Ep, where
δp is asymptomatic progression rate from exposed compartment. Hence, rate of change of
sub-population of exposed individuals is given by

dEp

dt
= β2S(Ip + kAp)+β1SW −µEp − (1−δp)ωpEp −δpω

′
pEp. (2.2)

Sub-population of tested individuals increased by the quantity (1− δp)ωpEp and decreases by
the quantities µTp and αTp, where α denote the testing rate of individuals. Rate of change of
sub-population of tested individuals is generated as

dTp

dt
= (1−δp)ωpEp −µTp −αTp. (2.3)

Trends Comput. Appl. Math., 26 (2025), e01796
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The sub-population of infectious individuals is increased by the quantity αTp and decreased
by the quantities γpIp, µIp, µpIp and θ Ip, where γp denote natural recovery rate of infected
human, µp denote the rate at which symptomatic infectious individuals transfer infection from
the infectious to the reservoir, θ denote the death through the infection. Hence, rate of change of
Infectious class is given by

dIp

dt
= αTp − (γp +µ +µp +θ)Ip. (2.4)

The sub-population of human - human symptomatic transmission is increased by the quantity
γpIp and reduces through the quantities µHh and γhHh, where γh denote the rate of transmis-
sion from human to human. Hence, rate of change of symptomatic human-human transmission
compartment is given by

dHh

dt
= γpIp − (γh +µ)Hh. (2.5)

The sub-population of symptomatic infected people to family member increased by the quantity
γhHh and reduces through the quantities µFm and γmFm, where γm denote the transmission rate
within the family member . Thus, the rate of change of Symptomatic infected people within
family is given by

dFm

dt
= γhHh − (µ + γm)Fm. (2.6)

Sub-population of symptomatic infected patient to care centre increased by the quantity γmFm

and µCc and γcCc, where γc denote the rate of caring for the infected individuals. So, the rate of
change of clinic care compartment is given by

dCc

dt
= γmFm − (µ + γc)Cc. (2.7)

The sub-population of asymptomatic infected people is intensify by the quantity δpω ′
pEp and

reduces through the quantities µAp, γ ′pAp, µAAp, where γ ′p denote the recovery rate of asymp-
tomatic infectious people and µA denote rate of transferring infection from asymptomatic to
reservoir. Therefore, the rate of change of the asymptomatic infected people compartment is
given by

dAp

dt
= δpω

′
pEp − (µ + γ

′
p +µA)Ap. (2.8)

The sub-population of recovered individuals increased by quantities γ ′pAp and γcCc and reduces
through the quantity µRp. Thus, the rate of change of recovery compartment is given by

dRp

dt
= γcCc + γ

′
pAp −µRp. (2.9)

The sub-population of infection reservoir is increased by the quantities µpIp and µAAp and re-
duces through the quantity µW , εW , where ε denote the rate at which virus leave reservoir and
µ denote natural mortality rate. Hence, the rate of change of the reservoir compartment is given
by

dW
dt

= µpIp +µAAp − (µ + ε)W. (2.10)

Trends Comput. Appl. Math., 26 (2025), e01796
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6 DYNAMICS OF COVID-19 FROM RESERVOIR-TO-HUMAN

2.2 Model Assumption

The following assumptions are applied on the model

(i) The population entry is open and exit is through mortality.

(ii) The population is heterogeneous.

(iii) The model assumed that infection started spreading from the reservoir.

(iv) The Covid-19 infected person can either be symptomatic or asymptomatic.

(v) Covid-19 confers temporary immunity. That is individuals in this category become
susceptible after recovery from infection.

(vi) The people in each compartment have equal natural death rate.

(vii) The model assumed that symptomatic and asymptomatic infection returned back to the
reservoir.

From the description and assumptions above, the flow chart for the S−Ep −Tp − Ip −Hh −Fm −
Cc −Ap −Rp −W compartmental dynamics for the Covid-19 spread rate is shown in Figure 1
below.

Figure 1: Flow chart of Covid infection transmission from Reservoir-Human.

Trends Comput. Appl. Math., 26 (2025), e01796
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2.3 Mathematical Formulation of the Model

The state variables and parameters listed in Table 1 and 2 satisfies Eq. (2.11). Thus, the model
will be analysed in a suitable region. The ordinary differential equations obtained from the
assumptions and descriptions of the flow chart are as follows:

dS
dt

= ∧p −β2S(Ip + kAp)−β1SW −µS,

dEp

dt
= β2S(Ip + kAp)+β1SW −µEp − (1−δp)ωpEp −δpω ′

pEp,

dT
dt

= (1−δp)ωpEp −µTp −αTp,

dIp

dt
= αTp − γpIp − (µ +µp +θ)Ip,

dHh

dt
= γpIp − (γh +µ)Hh,

dFm

dt
= γhHh − (µ + γm)Fm,

dCc

dt
= γmFm − (µ + γc)Cc,

dAp

dt
= δpω ′

pEp − (µ + γ ′p +µA)Ap,

dRp

dt
= γcC−µRp + γ ′pAp,

dW
dt

= µpIp − (µ + ε)W +µAAp.

(2.11)

With initial condition S(0) = S0,Ep(0) = Ep0,Tp(0) = Tp0, Ip(0) = Ip0,Hh(0) = Hh0,Fm(0) =
Fm0,Cc(0) =Cc0,Ap(0) = Ap0,Rp(0) = Rp0 =W (0) =W0.

3 QUALITATIVE ANALYSIS OF THE MODEL ANALYSIS

In this section, the dynamics of the model and basic properties of model system in Eq. (2.11)
such as feasibility and positivity are studied.

3.1 Dynamics of Populations N(t)

Population N(t) is defined by

N(t) = S+Ep +Tp + Ip +Hh +Fm +Cc +Ap +Rp +W (3.1)

dN
dt

=
dS
dt

+
dEp

dt
+

dTp

dt
+

dIp

dt
+

dHh

dt
+

dFm

dt
+

dCc

dt
+

dAp

dt
+

dRp

dt
+

dW
dt

, (3.2)

dN
dt

= ∧p −µ(S+Ep +Tp + Ip +Hh +Fm +Cc +Ap +Rp +W )−θ Ip − εW. (3.3)

Finally, Eq. (3.3) can be expressed respectively in the form of population dynamic:

dN
dt

= ∧p −µN(t)−θ Ip − εW. (3.4)

Hence, Eq. (3.4) is showing the changes in the population known as population dynamics.

Trends Comput. Appl. Math., 26 (2025), e01796



i
i

“1796” — 2025/3/24 — 19:06 — page 8 — #8 i
i

i
i

i
i

8 DYNAMICS OF COVID-19 FROM RESERVOIR-TO-HUMAN

3.2 Model Feasibility

The feasibility of the model describes the region in which the solution of the system in Eq. (2.11)
is biologically meaningful. Since the Covid-19 model displays human populations, it is assumed
that all the state variables are non-negative for all time t ≥ 0 and that the solutions of the model in
Eq. (2.11) with positive initial data remain positive for all time t ≥ 0. The associated parameters
are assumed as positive for all time t ≥ 0. The model Eq. (2.11) will therefore be analyzed in a
suitable feasible region, obtained as follows.

Theorem 3.1. The solution of the model in Eq. (3.4) with initial condition in R10
+ for which Eq.

(3.4) hold, approaches and stays in compact set (Ω) as t → ∞. Then, the model feasible solution
is given by

Γ =

{
(S,Ep,Tp, Ip,Hh,Fm,Cc,Ap,Rp,W ) ∈ R10

+ : N(t)≤
∧p

µ

}
.

Proof. From Eq. (3.4) changes in N leads to

dN
dt

= ∧p −µN(t)−θ Ip − εW, (3.5)

In the absence of disease (θ = ε = 0), Eq. (3.5) reduces to

dN
dt

= ∧p −µN(t). (3.6)

Applying theorem on differential inequalities in [22] and method of separation of variables on
inequality in Eq. (3.6) gives

dN
dt

= ∧p −µN(t)−θ Ip − εW ≤ ∧p −µN(t). (3.7)

Hence,
dN
dt

≤ ∧p −µN(t), (3.8)

this implies
dN(t)

∧p −µN(t)
≤ dt. (3.9)

After solving Eq. (3.9) with t → ∞, N approaches

0 ≤ N ≤
∧p

µ
=⇒ N(t)≤

∧p

µ
, (3.10)

This implies that 0 ≤ N ≤ ∧p
µ

, then paths of the model Eq. (2.11) are bounded.

Hence, the solution set for the system (2.11) is obtained as

Γ =

{
(S,Ep,Tp, Ip,Hh,Fm,Cc,Ap,Rp,W ) ∈ ℜ

10
+ : N(t)≤

∧p

µ

}
,

is a subset of the system’s state space which is bounded and closed, so it contains all its
limit points, if the system starts within this set at an initial time, it will remain within the set
for all future times. Hence the system (2.11) is epidemiologically important and well-posed
mathematically in the interior of domain Γ. □

Trends Comput. Appl. Math., 26 (2025), e01796
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3.3 Positivity of Solutions of State Variables

If all of the state variables in the model assume non-negative values, the solution to model Eq.
(2.11) is said to be positive. The model in Eq. (2.11) must be shown to have non-negative state
variables for all time t in order for it to be epidemiologically significance. It must be shown that
model Eq. (2.11) solutions with positive beginning data continue to be positive for all times t > 0.
The result is displayed below.

Theorem 3.2. If the initial value of the system in Eq. (2.11) be
{(S(0),Ep(0),Tp(0), Ip(0),Hh(0),Fm(0),Cc(0),Ap(0),Rp(0),W (0))≥ 0} ∈ Γ. Then, the so-
lution set {S(t),Ep(t),Tp(t), Ip(t),Hh(t),Fm(t),Cc(t),Ap(t),Rp(t),W (t)} of Eq. (2.11) is
non-negative for all t > 0.

Proof. According to Theorem 3.2, we obtain following results.

First equation from system Eq. (2.11),

dS
dt

= ∧p −β2S(Ip + kAp)−β1SW −µS

dS
dt

≥−µS. (3.11)∫ 1
S

dS ≥−µ

∫
dt, (3.12)

lnS(t)≥−µt +C. (3.13)

S(t)≥ Ae−µt . where A is a constant (3.14)

Setting t = 0 and substituting the initial conditions, yields

S(t)≥ S(0)e−µt ≥ 0, since µ > 0. (3.15)

Hence S is positive for t > 0.

Similarly, the remaining state variables in Eq. (2.11) are obtained in the same manner, gives:

Ep(t)≥ 0,Tp ≥ 0, Ip ≥ 0,Hh ≥ 0,Fm ≥ 0,Cc ≥ 0,Rp ≥ 0,W (t)≥ 0. (3.16)

The inequalities in Eqs. (3.15) and (3.16) shows that the variables
S(t),Ep(t),Tp(t), Ip(t),Hh(t),Fm(t),Cc,Rp and W(t) are positive for all t > 0.
Therefore we have shown that all state variables are non-negative for all t > 0. □

3.4 Existence of Equilibrium Points

If E(S+Ep+Tp+ Ip+Hh+Fm+Cc+Ap+Rp+W )∈ Γ are the equilibrium points of the system
in Eq. (2.11).
Then setting the condition below, equilibrium states are obtained.

dS
dt

=
dEp

dt
=

dTp

dt
=

dIp

dt
=

dHh

dt
=

dFm

dt
=

dCc

dt
=

dAp

dt
=

dRp

dt
=

dW
dt

= 0.

Trends Comput. Appl. Math., 26 (2025), e01796
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10 DYNAMICS OF COVID-19 FROM RESERVOIR-TO-HUMAN

The equilibrium states give the following equations:

∧p −β2S(Ip + kAp)−β1SW −µS = 0
β2S(Ip + kAp)+β1SW −µEp − (1−δp)ωpEp −δpω ′

pEp = 0
(1−δp)ωpEp −µTp −αTp = 0

αTp − γpIp − (µ +µp +θ)Ip = 0
γpIp − (γh +µ)Hh = 0

γhHh − (µ + γm)Fm = 0
γmFm − (µ + γc)Cc = 0

δpω ′
pEp − (µ + γ ′p +µA)Ap = 0

γcC−µRp + γ ′pAp = 0
µpIp − (µ + ε)W +µAAp = 0

(3.17)

System (2.11) yield ℜ10
+ : the disease-free equilibrium is E0(S0 +E0

p +T 0
p + I0

p +H0
h +F0

m +C0
c +

A0
p +R0

p +W 0) ∈ Γ0 and endemic equilibrium is E∗(S∗+E∗
p +T ∗

p + I∗p +H∗
h +F∗

m +C∗
c +A∗

p +

R∗
p +W ∗) ∈ Γ∗

3.5 Disease - free equilibrium (DFE) Point

When there is no infection or the illness has been completely eradicated, the situation is known
as the disease-free equilibrium point. E0 = (S0,E0

p,T
0
p , I

0
p,H

0
h ,F

0
m,C

0
c ,A

0
p,R

0
p,W

0) is the disease-
free equilibrium points.
Solving model Eq. (2.11) simultaneously to obtain disease - free equilibrium, becomes

E0 = (S0,E0
p,T

0
p , I

0
p,H

0
h ,F

0
m,C

0
c ,A

0
p,R

0
p,W

0) =

(
∧p

µ
,0,0,0,0,0,0,0,0,0

)
. (3.18)

3.6 Basic Reproductive Number of the Model

The differential equations related to the compartments Ep,Tp, Ip,Hh,Fm,Cc and Ap are used to
derive the R0. The next generation matrix method in [19, 33] was employed to determine the
rate of emergence of a new infection in compartment E, in which the rate of appearance of new
infection is Fi and the transfer of individuals out of the classes of system Eq. (2.11) by other
means is Vi . Where i is represented with the following compartments Ep,Tp, Ip,Hh,Fm,Cc,Ap.
Also Vi = V−

i −V+
i , with V+

i (x) be the rate of transfer of individuals into compartment i by all
other means and V−

i (x) be the rate of transfer of individuals out of compartment i.

F =



β2S(Ip + kAp)+β1SW
0
0
0
0
0
0


,V =



(µ +ωp −δpωp +δpω ′
p)Ep

−(1−δp)ωpEp +µTp +αTp

−αTp + γpIp +(µ +µp +θ)Ip

−γpIp +(γh +µ)Hh

−γhHh +(µ + γm)Fm

−γmFm +(µ + γc)Cc

−δpω ′
pEp +(µ + γ ′p +µA)Ap


(3.19)

Trends Comput. Appl. Math., 26 (2025), e01796



i
i

“1796” — 2025/3/24 — 19:06 — page 11 — #11 i
i

i
i

i
i

J. A. AKINGBADE and F. D. AYEGBUSI 11

Obtaining the partial derivatives (i.e Jacobian matrix) of F and V in (3.19) with respect to
Ep,Tp, Ip,Hh,Fm,Cc,Ap at the disease-free equilibrium state gives

F =



0 0 β2 S0 0 0 0 β2 kS0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0



,V =



B1 0 0 0 0 0 0

−B2 B3 0 0 0 0 0

0 −B4 B5 0 0 0 0

0 0 −B6 B7 0 0 0

0 0 0 −B8 B9 0 0

0 0 0 0 −B10 B11 0

−B12 0 0 0 0 0 B13



(3.20)

V −1 =



1
B1

0 0 0 0 0 0

B2
B3B1

1
B3

0 0 0 0 0

B4B2
B5B3B1

B4
B5B3

1
B5

0 0 0 0

B6B4B2
B7B5B3B1

B6B4
B7B5B3

B6
B7B5

1
B7

0 0 0

B8B6B4B2
B9B7B5B3B1

B8B6B4
B9B7B5B3

B8B6
B9B7B5

B8
B9B7

1
B9

0 0

B10B8B6B4B2
B9B7B5B3B1B11

B10B8B6B4
B9B7B5B3B11

B10B8B6
B9B7B5B11

B10B8
B9B7B11

B10
B9B11

1
B11

0

B12
B1B13

0 0 0 0 0
1

B13



(3.21)

FV −1 =



β2 S0B4B2
B5B3B1

+ β2 kS0B12
B1B13

β2 S0B4
B5B3

β2 S0

B5
0 0 0 β2 kS0

B13

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0



(3.22)

Then the eigenvalues of the matrix (3.22) are obtained as

λ1 = 0

λ2 = 0

λ3 = 0

λ4 = 0

λ5 = 0

λ6 = 0

λ7 =
β2S0(B4B2B13 + kB12B5B3)

B5B3B1B13


Trends Comput. Appl. Math., 26 (2025), e01796



i
i

“1796” — 2025/3/24 — 19:06 — page 12 — #12 i
i

i
i

i
i

12 DYNAMICS OF COVID-19 FROM RESERVOIR-TO-HUMAN

From the eigenvalues λ1 −λ7 above, the dominant largest eigenvalues is λ7. Therefore, the basic
reproduction number which is given by the largest eigenvalue for the model denoted by R0 is
given by

R0 =
β2S0(B4B2B13 + kB12B5B3)

B5B3B1B13

where,
S0 =

∧p
µ
, B1 = µ +ωp −δpωp +δpω ′

p, B2 = (1−δp)ωp, B3 = µ +α, B4 = α, B5 = γp +µ +

µp+θ , B6 = γp, B7 = γh+µ, B8 = γh, B9 = µ+γm, B10 = γm, B11 = γc+µ, B12 = δpω ′
p, B13 =

µ + γ ′p +µA

i.e.,

R0 =
β2 Λp

(
αωp (1−δp)

(
µ + γ ′p +µA

)
+ kδpω ′

p (γp +µ +µp +θ)(α +µ)
)

µ (γp +µ +µp +θ)(α +µ)
(
µ +ωp −δpωp +δpω ′

p
)(

µ + γ ′p +µA
) (3.23)

Remark 1: Epidemiologically

(i) if R0 = 1, Covid-19 infection persist in the populace.

(ii) if R0 < 1, Covid-19 infection prevalence will wane and ultimately wiped out.

(iii) if R0 > 1, The Covid-19 infection will continue to spread frequently.

3.7 Local Stability Analysis of the DFE Point

To determine the stability or otherwise of the disease - free equilibrium point E0, we examine the
behaviour of the model population near the equilibrium solution. The conditions for DFE to be
stable and asymptotically stable will be discussed here.

Definition 3.1. Jacobian Matrix

The Jacobian matrix is a matrix containing the first-order partial derivatives of a vector-valued
function with respect to its input variables. It provides the linear approximation of the function
near a given point.
Let F(x) = [ f1(x), f2(x), . . . , fm(x)]T be a vector-valued function, where each fi is a scalar func-
tion, and x = [x1,x2, . . . ,xn]

T is a vector of variables. The Jacobian matrix J(x) is defined as
follows:

J(x) =


∂ f1
∂x1

∂ f1
∂x2

. . . ∂ f1
∂xn

∂ f2
∂x1

∂ f2
∂x2

. . . ∂ f2
∂xn

...
...

. . .
...

∂ fm
∂x1

∂ fm
∂x2

. . . ∂ fm
∂xn


Each element of the Jacobian matrix represents the rate of change of one component of the output
with respect to one of the input variables.

Trends Comput. Appl. Math., 26 (2025), e01796
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Theorem 3.3. The disease-free equilibrium point E0 is locally asymptotically stable if R0 < 1 for
tr(JE0)< 0 and det(JE0)> 0, and unstable if R0 > 1 for tr(JE0)> 0 and det(JE0)< 0.

Proof. The proof of the Theorem 3.3 can be established by constructing a Jacobian matrix for the
model system Eq. (2.11) evaluated at the DFE (E0). At disease-free equilibrium, I0

p =A0
p =W = 0

and S0 =
∧p

µ
the Jacobian matrix is

JE0 =



−µ 0 0 −G1 0 0 0 −kG1 0 −G2

0 −G3 0 G1 0 0 0 kG1 0 G2

0 G4 −G5 0 0 0 0 0 0 0

0 0 α −G6 0 0 0 0 0 0

0 0 0 γp −G7 0 0 0 0 0

0 0 0 0 γh −G8 0 0 0 0

0 0 0 0 0 γm −G9 0 0 0

0 G10 0 0 0 0 0 −G11 0 0

0 0 0 0 0 0 γc γ ′p −µ 0

0 0 0 µp 0 0 0 µA 0 −(µ + ε)



(3.24)

Where, G1 =
β2∧p

µ
,G2 =

(β1∧p)
µ

,G3 = (µ +(1− δp)ωp + δpω ′
p),G4 = (1− δp)ωp,G5 = (µ +

α),G6 = (γp + µ + µp + θ),G7 = (µ + γh),G8 = (µ + γm),G9 = (γc + µ),G10 = δpω ′
p,G11 =

(µ + γ ′p +µA)

The method of trace and determinant was applied to evaluate our system of equations without
explicitly calculating eigenvalues.
The matrix JE0 in Eq. (3.24) of dimension 10 is stable if its trace is negative i.e tr(JE0) < 0 and
its determinant is positive i.e det(J0)≥ 0.
The trace of matrix JE0 is obtained as:

tr(JE0) = −3 µ −G3 − G5 −G6 −G7 −G8 −G9 −G11 − ε

= −(3 µ +G3 + G5 +G6 +G7 +G8 +G9 +G11 + ε)

= −(9 µ +(1−δp)ωp +δpω ′
p +α + γp +µp +θ + γh + γm + γc + γ ′p +µA + ε)

tr(JE0) < 0
(3.25)

Also, the determinant of matrix JE0 is generated as

det(JE0)= µ
2G7G8G9

(
G6G5G3G11ε −G6G5G10µAG2 −G6G5G10kG1ε −G1αG4G11ε −µpαG4G11G2

)
det(JE0) = µ

2G7G8G9 [ε(1−R0)−G2(G6G5G10µA +µpαG4G11)] (3.26)

det(JE0)> 0 if and only if ε(1−R0)> G2(G6G5G10µA +µpαG4G11),

ε >
G2(G6G5G10µA+µpαG4G11)

(1−R0)
and R0 < 1.

(3.27)

Trends Comput. Appl. Math., 26 (2025), e01796
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14 DYNAMICS OF COVID-19 FROM RESERVOIR-TO-HUMAN

From the result of the trace and determinant of the matrix which shows that tr(JE0) < 0 and
det(JE0)> 0 then R0 < 1.

This proves that the disease-free equilibrium point is locally asymptotically stable. Biologically,
this means that the disease dies out.

Conversely if R0 > 1 then tr(JE0) > 0. This would cause the determinant to be negative (i.e
det(JE0) < 0) and making the disease free-equilibrium point unstable. Biologically, this means
that the disease persists. □

3.8 Endemic Equilibrium Point

The condition for endemic equilibrium of model system (2.11) is determined here. Endemic
equilibrium state is the state where the disease cannot be totally eradicated but persist in the
population. Then, all the state variables in Eq. (2.11) must not be zero at this equilibrium state.
i.e.,
E∗ = (S∗,E∗

p,T
∗
p , I

∗
p,H

∗
h ,F

∗
m,C

∗
c ,A

∗
p,R

∗
p,W

∗)Γ ̸= (0,0,0,0,0,0,0,0,0,0):

Solving Eq. (2.11) simultaneously in terms of R0, the solution obtained is given below.

Let,

S∗ =
S0

R0
,

Therefore,

S∗ = εΦ1Φ2Φ3(µ+α)[
(1−δp)ωpαΦ1Φ4+δpω ′

p(µ+α)Φ3Φ5

]
E∗

p = ϑ1
Φ2ϑ2

T ∗
p =

(1−δp)ωpϑ1
Φ2(µ+α)ϑ2

I∗p =
(1−δp)ωpαϑ1
Φ2Φ3(µ+α)ϑ2

H∗
h =

(1−δp)ωpα2ϑ1
Φ2Φ3(µ+α)(γh+µ)ϑ2

F∗
m =

γh(1−δp)ωpα2ϑ1

Φ2Φ3(µ+α)2(γh+µ)ϑ2

C∗
c =

γmγh(1−δp)ωpα2ϑ1

Φ2Φ3(µ+α)2(γh+µ)(µ+γc)ϑ2

A∗
p =

δpω ′
p

[
∧p

[
(1−δp)ωpαΦ1Φ4+δpω ′

p(µ+α)Φ3Φ5

]
−µεΦ1Φ2Φ3(µ+α)

]
Φ2Φ1

[
(1−δp)ωpαβ2εΦ1+β1[µp(1−δp)ωpαΦ1+µAδpω ′

p(µ+α)Φ3]−β2εΦ3kδpω ′
p(µ+α)

]
R∗

p =
ϑ1

[
γcγmγh(1−δp)ωpα2+δpα ′ω ′

p(µ+α)2(γh+µ)(µ+γc)
]

Φ2Φ3µ(µ+α)2(γh+µ)(µ+γc)ϑ2

W ∗ =
[µp(1−δp)ωpαΦ1+µAδpω ′

p(µ+α)Φ3]ϑ1
εΦ1Φ2Φ3(µ+α)ϑ2

(3.28)

where, ϑ1 =
[
∧p

[
(1−δp)ωpαΦ1Φ4 +δpω ′

p(µ +α)Φ3Φ5
]
−µεΦ1Φ2Φ3(µ +α)

]
, ϑ2 =

[
(1−

δp)ωpαβ2εΦ1 + β1[µp(1 − δp)ωpαΦ1 + µAδpω ′
p(µ + α)Φ3]− β2εΦ3kδpω ′

p(µ +α)
]
, Φ1 =

(µ + γ ′p +µA), Φ2 = (µ +ωp −δpωp +δpω ′
p), Φ3 = (γp +µ +µp +θ),Φ4 = (β2ε +β1µp) and

Φ5 = (β2εk+β1µA)

Trends Comput. Appl. Math., 26 (2025), e01796
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3.9 Global Stability of Disease-Free Equilibrium

In this subsection, global stability of the disease-free equilibrium (E0) will be proved. The result
is obtained by means of Lyapunov function constructed of the linear function (see, [8,30,34,35]).

Theorem 3.4. For R0 ≤ 1, the disease-free equilibrium of the system in Eq. (2.11) is globally
asymptotically stable.

Proof. Consider the Lyapunov candidate function below

L(t) =

(
S−S0 −S0 ln S0

S

)
+d1EP +d2TP +d3Ip +d4Hh +d5Fm +d6Cc +d7AP +d8R+d9W

L̇(t) =

(
1− S0

S

)
Ṡ+d1ĖP +d2ṪP +d3 İp +d4Ḣh +d5Ḟm +d6Ċc +d7ȦP +d8Ṙ+d9Ẇ

(3.29)

L̇(t) =
(

1− S0

S

)
[∧p −β2S(Ip + kAp)−β1SW −µS]+d1β2SIp + kd1β2SAp+

d1β1SW −d1(µ +(1−δp)ωp +δpω ′
p)Ep +d2(1−δp)ωpEp −d2(µ +α)Tp+

d3αTp −d3(γp +µ +µp +θ)Ip +d4γpIp −d4(γh +µ)Hh +d5γhHh−
d5(µ + γm)Fm +d6γmFm −d6(µ + γc)Cc +d7δpω ′

pEp −d7(µ + γ ′p +µA)Ap+

d8γcC−d8µRp +d8γ ′pAp +d9µpIp −d9εW +d9µAAp

(3.30)

Solving the equation involves with the coefficient of EP,Tp, Ip,Hh,Fm,Cc,AP,RP,W
simultaneously, yields

d1 =
d3(γp+µ+µp+θ)ε
(εkβ2+µpβ1)S

,d2 =
d3γp

(µ+γp)
,d7 =

d3(γp+µ+µp+θ)(εkβ2+µAβ1)
(εkβ2+µpβ1)(µ+γ ′p+µA)

,

d9 =
β1d3(γp+µ+µp+θ)

(εkβ2+µpβ1)
,d4 = d5 = d6 = d8 = 0

(3.31)

On substituting the values of d1...d9 into Eq. (3.30) gives

L̇(t) =
(

1− S0

S

)
[∧p −β2S(Ip + kAp)−β1SW −µS]+

d3(γp +µ +µp +θ)εβ2Ip

(εkβ2 +µpβ1)
+

d3k(γp +µ +µp +θ)εβ2Ap

(εkβ2 +µpβ1)
+

d3(γp +µ +µp +θ)εβ1W
(εkβ2 +µpβ1)

+
d3γp(1−δp)ωpEp

(µ + γp)

−
d3(γp +µ +µp +θ)ε(µ +(1−δp)ωp +δpω ′

p)Ep

(εkβ2 +µpβ1)S
−

d3γp(µ +α)Tp

(µ + γp)
−d3(γp +µ +µp +θ)Ip

+d3αTp +
d3(γp +µ +µp +θ)(εkβ2 +µAβ1)δpω ′

pEp

(εkβ2 +µpβ1)(µ + γ ′p +µA)
+

β1d3(γp +µ +µp +θ)µpIp

(εkβ2 +µpβ1)

−
d3(γp +µ +µp +θ)(εkβ2 +µAβ1)Ap

(εkβ2 +µpβ1)
−

β1d3(γp +µ +µp +θ)εW
(εkβ2 +µpβ1)

+
β1d3(γp +µ +µp +θ)µAAp

(εkβ2 +µpβ1)

(3.32)

After Simplification we have,

L̇(t)≤−
[(

S0

S
−1

)
[µ(S−S0)+β2S(Ip + kAp)+β1SW ]+

d3(γp −α)µTp

(µ + γp)

+
d3(γp +µ +µp +θ)(k−1)εβ2Ip

(εkβ2 +µpβ1)
+

d3[Φ1 − (Φ2 +Φ3)S]Ep

(µ + γp)(εkβ2 +µpβ1)(µ + γ ′p +µA)S

] (3.33)

Φ1 = (µ + γp)(µ + γ ′p +µA)(γp +µ +µp +θ)ε(µ +(1−δp)ωp +δpω ′
p)

Φ2 = γp(1−δp)ωp(εkβ2 +µpβ1)(µ + γ ′p +µA)

Trends Comput. Appl. Math., 26 (2025), e01796



i
i

“1796” — 2025/3/24 — 19:06 — page 16 — #16 i
i

i
i

i
i
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Φ3 = (µ + γp)(γp +µ +µp +θ)(εkβ2 +µAβ1)δpω ′
p

Hence, L̇ < 0, if S > 0, d3 > 0, Φ1,Φ2,Φ3 > 0, γp > α , and Φ1 > (Φ2 +Φ3)S. Also, L̇ = 0 iff
d3 = 0, S = S0, and Ip = Ep = Tp = 0.
Thus, every solution that starts in Γ approaches E0 as t → ∞. This shows that E0 is globally
asymptotically stable in Γ. □

3.10 Global Stability of Endemic Equilibrium

Lyapunov functions used in [1, 2, 3, 4, 8, 15, 31] will be applied here to demonstrate the global
stability of the endemic equilibrium of the model in Eq. (2.11). The results follow as.

Theorem 3.5. The endemic equilibrium E∗ is globally asymptotically stable on Γ if and only if
P1,P2,P3,P4,P5,P6,P7 > 0 and S = S∗, Ep = E∗

p,Tp = T ∗
p , IA = I∗A, Hh = H∗

h , Fm = F∗
m, Cc = C∗

c ,
Ap = A∗

p, Rp = R∗
p, W =W ∗ with R0 > 1.

Proof. Given the Lyapunov candidate function as

L = S−S∗ lnS+Ep −E∗
p lnEp +Tp −T ∗

p lnTp +P1(Ip − I∗p ln Ip)+

P2(Hh −H∗
h lnHh)+P3(Fm −F∗ lnFm)+P4(Cc −C∗

c lnCc)+

P5(Ap −A∗ lnAP)+P6(Rp −R∗
p lnRp)+P7(W −W ∗ lnW )

(3.34)

L̇ =

(
1− S∗

S

)
Ṡ+

(
1− E∗

p
Ep

)
Ėp +

(
1− T ∗

p
Tp

)
Ṫp +P1

(
1− I∗p

Ip

)
İp +P2

(
1− H∗

h
Hh

)
Ḣh+

P3

(
1− F∗

m
Fm

)
Ḟm +P4

(
1− C∗

c
Cc

)
Ċc +P5

(
1− A∗

p
Ap

)
Ȧp +P5

(
1− R∗

p
Rp

)
Ṙp +P6

(
1− W ∗

W

)
Ẇ .

(3.35)

L̇ =

(
1− S∗

S

)
[∧p −β2S(Ip + kAp)−β1SW −µS]+

(
1− E∗

p
Ep

)
[β2S(Ip + kAp)+

β1SW −µEp − (1−δp)ωpEp −δpω ′
pEp]+

(
1− T ∗

p
Tp

)
[(1−δp)ωpEp −µTp −αTp]+

P1

(
1− I∗p

Ip

)
[αTp − γpIp − (µ +µp +θ)Ip]+P2

(
1− H∗

h
Hh

)
[γpIp − (γh +µ)Hh]+

P3

(
1− F∗

m
Fm

)
[γhHh − (µ + γm)Fm]+P4

(
1− C∗

c
Cc

)
[γmFm − (µ + γc)Cc]

+P5

(
1− A∗

p
Ap

)
[δpω ′

pEp − (µ + γ ′p +µA)Ap]+P6

(
1− R∗

p
Rp

)
[γcC−µRp + γ ′pAp]+

P7

(
1− W ∗

W

)
[µpIp − (µ + ε)W +µAAp].

(3.36)

Considering Eq. (2.11) at endemic equilibrium, where first line is

∧p = β2S∗(I∗p + kA∗
p)+β1S∗W ∗+µS∗.
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Substituting the values of ∧p into Eq. (3.36) we obtained

L̇ ≤
(

1− S∗
S

)
[β2S∗(I∗p + kA∗

p)+β1S∗W ∗+µS∗−β2S(Ip + kAp)−β1SW −µS]+(
1− E∗

p
Ep

)
[β2S(Ip + kAp)+β1SW −µEp − (1−δp)ωpEp −δpω ′

pEp]+(
1− T ∗

p
Tp

)
[(1−δp)ωpEp −µTp −αTp]+P1

(
1− I∗p

Ip

)
[αTp − γpIp − (µ +µp +θ)Ip]+

P2

(
1− H∗

h
Hh

)
[γpIp − (γh +µ)Hh]+

P3

(
1− F∗

m
Fm

)
[γhHh − (µ + γm)Fm]+P4

(
1− C∗

c
Cc

)
[γmFm − (µ + γc)Cc]

+P5

(
1− A∗

p
Ap

)
[δpω ′

pEp − (µ + γ ′p +µA)Ap]+P6

(
1− R∗

p
Rp

)
[γcC−µRp + γ ′pAp]+

P7

(
1− W ∗

W

)
[µpIp − (µ + ε)W +µAAp].

After simplification,

L̇ ≤−
[(

S∗

S
−1

)
[β2[(I∗p + kA∗

p)S
∗− (Ip + kAp)S]+β1(S∗W ∗−SW )+µ(S∗−S)]+(

E∗
p

Ep
−1

)
β2S(Ip + kAp)+

(
E∗

p

Ep
−1

)
β1SW +µ(Ep −E∗

p)+(1−δp)ωp(Ep −E∗
p)+

δpω
′
p(Ep −E∗

p)+

(
T ∗

p

Tp
−1

)
(1−δp)ωpEp +µ(Tp −T ∗

p )+α(Tp −T ∗
p )+P1

(
I∗p
Ip

−1
)

αTp+

P1γp(Ip − I∗p)+P1(µ +µp +θ)(Ip − I∗p)+P2

(
H∗

h
Hh

−1
)

γpIp +P2(γh +µ)(Hh −H∗
h )+

P3

(
F∗

m
Fm

−1
)

γhHh +P3(µ + γm)(Fm −F∗
m)+P4

(
C∗

c
Cc

−1
)

γmFm +P4(µ + γc)(Cc −C∗
c )+

P5

(
A∗

p

Ap
−1

)
δpω

′
pEp +P5(µ + γ

′
p +µA)(Ap −A∗

p)+P6

(
R∗

p

Rp
−1

)
γcC+P6µ(Rp −R∗

p)+

P6

(
R∗

p

Rp
−1

)
γ
′
pAp +P7

(
W ∗

W
−1

)
µpIp +P7(µ + ε)(W −W ∗)+P7

(
W ∗

W
−1

)
µAAp

]
.

Thus, L̇ < 0 if and only if P1,P2,P3,P4,P5,P6,P7 > 0. Note that, L̇ = 0 if and only if S = S∗,
Ep = E∗

p, Tp = T ∗
p , IA = I∗A, Hh = H∗

h , Fm = F∗
m, Cc =C∗

c , Ap = A∗
p, Rp = R∗

p and W =W ∗. Hence,
E∗ is globally asymptotically stable in the interior of Γ. □

3.11 Sensitivity Analysis of the Model

The sensitivity analysis is to check the effect of each parameter in order to reduce the trans-
mission of Covid from reservoir to the human then with the family. Comparative contributions
of each parameters applied in the model which responsible for the transmission and prevalence
of Covid-19 is been discussed here. The Table 3 displayed each parameters used in this section
chosen from the realistic ranges for illustrative purpose.
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Table 3: Parameter values of the model.

Parameter Symbol Baseline value
∧p 1000
β2 0.0510
β1 0.02
δp 0.65
α 0.015
γp 0.03
γh 0.05
γm 0.01
γc 0.8
γ ′p 0.8
µA 0.05
µ 0.013
µp [0.0 - 1.0]
ω ′

p 0.001
θ 0.05
ε 0.01

ωp 0.0058
k 0.001

Definition 3.2. Normalized forward sensitivity index of a variable Q that differentially depends
on a parameter m, is defined as: ZQ

m = ∂Q
∂m × m

Q where, ZR0
m is the sensitivity index of R0 with

respect to parameter, m.

3.11.1 Sensitivity Indices of R0

Given the explicit form of R0; analytical expression for its sensitivity to each parameter is
obtained by applying the normalized forward sensitivity index in [5, 9, 17] and given as:

ZR0
m =

∂R0

∂m
× m

R0
(3.37)

Sensitivity indices of R0 corresponding to these parameters:
∧p,β2,δp,k,µp,µ,θ ,µA,ω

′
p,ωp,γp,γ

′
p,α was derived and computed as follows.

ZR0
∧p =

∂R0

∂∧p
×

∧p

R0
=+1.00000

ZR0
β

=
∂R0

∂β2
× β2

R0
=+1.00000

ZR0
δp

=
∂R0

∂δp
×

δp

R0
=−1.85925


(3.38)
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The remaining indices are generated following the same method and presented in Table 4.

Table 4: Sensitivity indices of R0.

Parameters Sensitivity indices
R0

∧p +1.000000000
β2 +1.000000000
δp -1.859247020
k +0.006313642165

µp -0.5489979877
µ -3.174859406
θ -0.01372494969
µA -0.002924675064
ω ′

p -0.04164621907
ωp +0.9787081234
γp -0.08234969816
γ ′p -0.002924675064
α +0.8887194887

From Table 4, the indices with positive signs reveal that the value of R0, increases when the
corresponding parameters increases and indices with negative signs shows that, the value of R0

reduces with increase in the corresponding parameters. This analysis is done to establish which
parameters govern the results of our analysis.
Hence, it is clear from Table 4 that R0 will be minimized with increases in the values of the
relevant parameters, since the sensitivity indices of these parameters are negative.

4 NUMERICAL SIMULATION AND ANALYSIS

In this section, numerical simulations of the model was obtained through the assumed
and estimated parameters values shown in Table 3. Moreover, simulations have been ob-
tained with the help of Maple-17 package and MATLAB 2020b software with following ini-
tial conditions:S(0) = 75990;Ep(0) = 3876;Tp(0) = 1000; Ip(0) = 50;Hh(0) = 10;Fm(0) =
6;Cc(0) = 4;Ap(0) = 10;R(0) = 0;W (0) = 100,N = 81046. The step size during simulations
is taken to be h = 10−2. Table 5 shows the effect of varying the symptomatic infectious rate (µp),
asymptomatic (δp) and infectious contact rate (β2) parameters on reproduction number (R0).

The initial population values above was used for the simulation and the graphical solution
obtained is shown in the Figures 2-6.

Figure 4 describes the graph of asymptomatic infectious individuals against time (t) with effect
of asymptomatic infectious rate to reservoir µA.
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Table 5: Effect of varying Symptomatic (µp), Asymptomatic (δp) and contact (β2) rates Parame-
ters on Reproduction Number.

Parameters Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
1. µp 0.0 0.2 0.4 0.6 0.8 1.0

R0 3.9332 1.7663 1.1417 0.8450 0.6716 0.5579
2. δp 0.0 0.2 0.4 0.6 0.8 1.0

R0 3.2966 2.6242 1.9602 1.3044 0.6567 0.0190
3. β2 0.0810 0.0710 0.0610 0.0510 0.0410 0.0310

R0 1.5421 1.3517 1.1613 0.9709 0.7806 0.5902

Figure 2: Graph of the state variables with time using β1 > 0,µp = µA = γc = 0.
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Figure 3: Graph of the state variables with time using controls µp,µA,γc > 0 and β1 = 0.

Figure 4: Simulations of the model with varying effect values of µA for asymptomatic individuals.

It is seen that the asymptomatic infected class will reduce significantly with time when at most
80% of people that are having infection without symptoms recovered and make sure the infection
returned back to reservoir.
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Figure 5: Model simulations with varying effect values of γ ′p for asymptomatic individuals.

Shown in Fig. 5, as the recovery rate of asymptomatic increases the number of asymptomatic
infected become low and as the value of γ ′p decreases the number of asymptomatic infected
population increases. This shows that the infected people without symptoms are significantly
supporting the disease burden in the society.

Figures 6 (a) & (b) shows that if µp is applied at the rate of 50% to 100%, the disease spread rate
will be reduced from infected compartment and returned to reservoir or totally eradicated.

(a) Symptomatic-infected-compartment (b) Resevoir-comp

Figure 6: Plots of IP(t) and W(t) for different values of µp = 0.0, 0.2, 0.4, 0.6, 0.8,1.0.
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5 CONCLUSION AND RECOMMENDATION

5.1 Conclusion

A deterministic mathematical model was formulated and analysed in this work to investigate the
transmission dynamics of Covid-19 existence from reservoir to the society. The feasible region
and positivity solution of the model were obtained. Then, the next-generation matrix method
was applied to compute the basic reproductive number, R0. Local and global stability of disease-
free and endemic equilibra were analysed. The result shows that the Covid-19-free equilibrium
point is locally and as well globally asymptotically stable if R0 < 1 and unstable if R0 > 1. The
global stability of the disease-free and endemic equilibrium point were determined by using the
Lyapunov method. Besides, the equilibrium point is locally asymptotically stable if R0 > 1. From
the epidemiological point of view, the disease can be controlled if R0 is less than unity. Otherwise,
the disease can live on in the community. In ‘Parameter estimation’, the model parameters were
projected and followed from the existing literature.
In ‘analysis of sensitivity’, the normalized sensitivity indices of R0 show that the most sensitivity
parameters are µ , δp, µp and µA with negative sign, which shows that increasing the rate of
controlling symptomatic infected individuals reduces R0 while the least sensitive parameters are
∧p, β1 and β2. This indicates that reducing the contact rate of exposed individuals reduces R0.

The model was numerically simulated to display the graphical solution of the model through
MATLAB computer programming. The results show that, if the contact rate between infected
and susceptible human is very low, the disease will be minimal in the society and remain in the
reservoir. Also, if the rate of caring for the symptomatic patient is not less than 50%, the disease
will vanish and can only occur in the reservoir.

5.2 Recommendation

The future work will immensely focus on ways to control and eradicate the infection from the
reservoir in order to save the society completely from Covid-19 disease by applying optimal
control method.
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How to cite
J. A. Akingbade & F. D. Ayegbusi. A Deterministic Mathematical Model and Analysis of
Transmission. Trends in Computational and Applied Mathematics, 26(2025), e01796. doi:
10.5540/tcam.2025.026.e01796.

Trends Comput. Appl. Math., 26 (2025), e01796


