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ABSTRACT. To better understand the dynamics of air pollutants, several mathematical or computational
models have been developed and employed. Among the pollutants of interest are those related to the cycle
of formation of tropospheric ozone (O3), which involve nitrogen oxides NOx. In this process, there is a
sequence of chemical reactions whose most elementary modeling can be described in terms of ordinary
differential equations (ODEs), in which the concentrations (in µg/m3) of gases (O, NO, NO2, and O3) are
functions of time. A novel study of the model is presented in terms of the qualitative theory of ordinary dif-
ferential equations, for which the steady state of interest is non-hyperbolic. To study it, the Center Manifold
Theorem was used to determine its stability. As for the results, our analytical calculations demonstrate the
asymptotic local stability of the steady state, which was also numerically corroborated. Other than this new
result of stability, the conclusion is that the simplified model of ozone kinetics with fixed kinetic parameters
does not allow the behavior of sustained oscillatory solutions for the referred concentrations of pollutants,
requiring other ingredients for this to be feasible.

Keywords: mathematical modeling, ordinary differential equations, air pollutants, air quality, nitrogen
oxides.

1 INTRODUCTION

In environmental research and management, there is a clear need to describe how certain environ-
mental systems evolve from certain known conditions. In this sense, the environmental sciences
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2 A SIMPLIFIED KINETIC MODEL FOR THE TROPOSPHERIC OZONE CYCLE

agree with ideas from the physical and chemical sciences as to developing and improving quan-
titative tools that can describe and modulate their phenomena and processes. However, despite
sharing this quantitative view, concerning the complexity of their objects of study, environmental
sciences are configured differently [28].

In addition to extensive dimensions, also inherent in environmental systems are multiple events
of different natures: physical phenomena, interaction of chemical species, and biological pro-
cesses. Therefore, environmental sciences constitute an interdisciplinary field of knowledge that
is developed in the areas of science, technology, engineering, and mathematics [8], and whose
central objective concerns the study and management of processes that impact or may impact
human health and the environment. Ultimately, this translates into actions and interventions that
simultaneously aim to care for human health and preserve the natural environment. Thus, there
is a crucial need to consider the future and understand the impact of environmental events that
have not (yet) happened, whether natural (e.g., floods and windstorms) or anthropogenic (e.g.,
deforestation and air pollution).

In the management of environmental processes and problems, it is essential to prepare forecasts
of certain quantities of interest. To this end, in the context of air pollution studies, experimen-
tal approaches are crucial, especially for dynamically monitoring air quality indexes. However,
in terms of predictive studies, analyzing environmental monitoring data is only the first step in
preparing air pollution forecasts. Their development requires resorting to theoretical approaches,
which are based on mathematical and computational models.1 These theoretical-computational
approaches make it possible to simulate different atmospheric pollution scenarios, without limita-
tions as to scale, time, and financial resources that are required in experimental approaches. From
a practical point of view, these characteristics make mathematical and computational models
essential for predicting the behaviors of real environmental systems [7].

In terms of air quality, there are several types of air pollutants. These include atmospheric
aerosols and gases (e.g., O3, NO2, and NO) [21]. According to the emission source, pollutants
can also be classified as primary, when directly emitted by sources, or secondary, when gener-
ated by physical and chemical processes in the atmosphere itself [21]. In the troposphere, with
pollutants emitted, and with the natural presence of oxygen, several reactions occur (in steps)
for the final formation of carbon dioxide (CO2). In these steps, several intermediate compounds
are formed. The NOx acts as catalysts and sunlight as energy (photochemical reaction) of these
reactions, and the main product formed is the ozone gas [21].

As for relevance, NO2 and NO can be considered the most important molecules in the chemistry
of the atmosphere. In the stratosphere (10 to 25 km altitude), the presence of O3 is beneficial,
mainly due to the formation of the ozone layer. However, in the troposphere (0 to 10 km altitude),
its presence is toxic to humans [27]. If at concentrations of inadequate levels, NO2 and O3 can
cause severe respiratory problems [11, 26, 29]. In this regard, the World Health Organization

1According to the definition of the US National Research Council, and not only in the mathematical scope, a model is
“a simplification of reality that is constructed to gain insights into select attributes of a particular physical, biological,
economic, or social system” [15].

Trends Comput. Appl. Math., 25 (2024), e01794
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(WHO) states in its most recent report that there is significant evidence that proves the effects
of these pollutants on health [30]. In particular, O3 and one of its precursors (NO2) follow the
guidelines of the Air Quality Guidelines established by the World Health Organization, which
must be observed to pose less health risk [29]. Recently, such guidelines have been updated
after an extensive review of scientific evidence on the effects of exposure to air pollutants. Their
main objective is to guide international legislation, focusing on reducing emissions according to
the socioeconomic conditions of each country [3, 13]. Table 1 presents a comparison of these
guidelines after the 2021 update for air pollutants directly related to the ozone cycle.

Table 1: WHO 2021/2005 air pollution guidelines comparison.

Pollutant Average time WHO 2005 WHO 2021 Change

O3 (µg/m3)
Peak Season N/A 60 Newly introduced

8–hour 100 100 Unchanged

NO2 (µg/m3)
Annual 40 10 Decreasing of 75%
24–hour N/A 25 Newly introduced
1–hour 200 200 Unchanged

Given the relevance of the topic to human health, several mathematical and computational mod-
els have been employed in the study and prediction of concentrations of pollutants in the tropo-
spheric ozone cycle. This area usually favors approaches involving the diffusion and convection
of pollutants, in addition to kinetics containing a high number of chemical reactions, variables,
and parameters [12]. However, despite being highly recommended for large-scale applications,
these complex approaches tend to disregard some basic facts related to fundamental mecha-
nisms in tropospheric pollution [10, 12]. In this work, we address one of these aspects from a
mathematical point of view, to determine whether a simplified kinetic model of the tropospheric
ozone with fixed kinetic parameters allows the existence of sustained oscillatory solutions for
the referred concentrations of the pollutants of the tropospheric ozone cycle. A notable exam-
ple of experimental observations of these oscillations in real data is presented in Figure 2 of the
reference [20].

Given the presented objective, this work is structured as follows. In Section 2, we describe the
basic elements that compose a simplified kinetic model of the tropospheric ozone cycle, which
therefore is presented without the presence of external sources of pollutants. In Section 3, we
analytically demonstrate and numerically confirm that fixed kinetic parameters cannot generate
sustained oscillatory variations for the concentrations of the pollutants of the tropospheric ozone
cycle described by the mathematical model. Finally, in Section 4 we present the conclusions of
the work and its brief prospects.

2 MODELING THE TROPOSPHERIC OZONE CYCLE

Nitrogen dioxide (NO2) and nitric oxide (NO) are jointly referred to as (NOx) (nitrogen ox-
ides) and enter the atmosphere through natural processes (biological processes and atmospheric

Trends Comput. Appl. Math., 25 (2024), e01794
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4 A SIMPLIFIED KINETIC MODEL FOR THE TROPOSPHERIC OZONE CYCLE

discharges) and anthropogenic processes (combustion of fossil fuels (electricity and transport),
biomass burning, and soil emissions from terrestrial ecosystems) [25]. Tropospheric ozone (O3)
is formed by a series of photochemical reactions, which involve nitrogen oxides (NOx) and
volatile organic compounds (VOCs), which are unburnt or partially oxidized hydrocarbons with
boiling temperatures between 50 and 260 ◦C [2]. Such compounds can be emitted by the burning
of fossil fuels (e.g., in vehicle emissions) [14], by the evaporation of fuels, by the use of sol-
vents, by the burning of biomass for energy generation, in forest fires and in fires for agricultural
purposes [1, 24].

Chemically, the formation of O3 occurs through the association of oxygen atoms (O) with the
molecular oxygen (O2) present in the atmosphere, having as the main source the dissociation of
NO2 due to sunlight [2]. In turn, NO2 is formed by the reaction of NO and VOCs with the aid
of free radicals [18]. In urban areas, the formation reaction of O3 is limited by the presence and
frequency of NO emission. As these pollutants are transported in air masses to other places, such
as rural areas, where there is no significant NO emission, the degradation of the formed and/or
transported does not occur, causing measurement peaks in these areas, even though they were
not responsible for their generation [20].

From a chemical point of view, the non-linearity in the process of formation of O3 is due to the
sequence of reactions involved. The increases and decreases in ozone concentration occur as a
function of the mixing ratio between NOx and VOCs. There are two different sensitivity regimes
for the formation of this pollutant due to its precursors (NOx and VOCs). In the regime sensitive
to NOx, in which there is a low concentration of NOx and a high concentration of VOCs, the
formation of O3 increases with the increase of NOx. On the other hand, in the regime sensitive to
VOCs, there is a low concentration of VOCs and a high concentration of NOx, and the formation
of O3 increases with the decrease of NOx [22]. In the atmosphere, in addition to VOCs, there
are also other external pollutants formed in incomplete combustion processes that can impact the
formation of tropospheric ozone. However, in this study, the tropospheric ozone cycle is analyzed
as a closed system, without the contribution of pollutant emission sources.

2.1 Kinetics of the Tropospheric Ozone Cycle with no Emission of Pollutants

For the constitution of the compartments of the mathematical model, we considered the con-
centrations (in µg/m3) of the following gases over time: O(3P), NO, NO2, and O3, where O(3P)
denotes the oxygen atom in its fundamental state. In the troposphere, these gases react according
to the following physicochemical reactions [9, 12, 17, 19, 27]:

NO2 + hν
k1

−−−−−→ NO + O(3P) (2.1)

O(3P) + O2 + M
k2

−−−−−→ O3 + M (2.2)

NO + O3
k3

−−−−−→ O2 + NO2 (2.3)

Trends Comput. Appl. Math., 25 (2024), e01794
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where reaction (2.1) refers to the photolysis of nitrogen dioxide, reaction (2.2) refers to the for-
mation of ozone, in which the oxygen atom reacts with the molecular oxygen generating ozone,
and reaction (2.3) describes the consumption of ozone by reaction with nitric oxide, again form-
ing nitrogen dioxide. In (2.1), (2.2), and (2.3), ki (i = 1,2,3) denotes the kinetic parameters of
the referred physicochemical reactions. Since k1,k2 and k3 refer to kinetic rates, these quantities
are positive parameters of the mathematical model.

Theoretically, the temporal dynamics of the chemical kinetics given by reactions (2.1), (2.2) and
(2.3) can be described by the following system of ordinary differential equations (cf. [9,17,19]):

d [O(3P)]
dt

= k1 [NO2] − k2 [O(3P)]

d [NO]

dt
= k1 [NO2] − k3 [NO] [O3]

d [NO2]

dt
= k3 [NO] [O3] − k1 [NO2]

d [O3]

dt
= k2 [O(3P)] − k3 [NO] [O3]

(2.4)

(2.5)

(2.6)

(2.7)

where k1 and k2 are first-order kinetic parameters and k3 is a second-order kinetic parameter.
Initial condition is non-negative.

Equations (2.4), (2.5), (2.6), and (2.7) describe the variation of the concentration of each of the
polluting gases over time. They mathematically model the rate at which reactants become prod-
ucts, where each portion of the direct side of the equations refers to the formation (+) or consump-
tion (–) of the compounds involved. Moreover, in general, since the ozone cycle is photon-guided,
ki parameters vary in relation to time of day and period of year [27].

In equation (2.4), referring to the concentration of O(3P), there is formation and consumption
of O(3P). The formation of O(3P) occurs as a result of the NO2 photodissociation reaction, and
its consumption occurs by the O3 synthesis reaction. In equation (2.5), NO is formed by NO2

photodissociation reaction, and consumed by the oxidation of NO by O3. In equation (2.6), in
turn, the amount of NO2 is determined by the rate of oxidation of NO by O3 and the rate of
photodissociation of NO2. Finally, in equation (2.7), the variation in the concentration of O3

occurs by the consumption of the pollutant, in oxidizing NO, and by its formation proportional
to the concentration of O(3P) [17, 27].

Despite being essential for the removal of O(3P) and formation of O3, the molecular oxygen O2

involved in the ozone synthesis reaction is not present in the system (2.4)-(2.7). This is mainly
because O2 is abundant in the atmosphere and its concentration does not vary significantly as
a function of solar radiation. Therefore, the concentration of O2 is considered constant over
time [17].

Trends Comput. Appl. Math., 25 (2024), e01794
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3 RESULTS

3.1 Existence and Uniqueness of the Solution

The existence and uniqueness of the solution of the system (2.4)-(2.7) is a direct consequence of
the Fundamental Existence-Uniqueness Theorem of Picard [16].

3.2 Positivity

To prove that the solution remains positive, for a dynamical system of the form X ′ = f (X), where
X ∈ Rn and f : Rn → Rn is Lipschitz continuous, one can check that each component fi ≥ 0 if
Xi = 0 for all i = 1,2, . . . ,n, which is known as tangential condition [6]. In fact, this condition
is fulfilled for the system (2.4)–(2.7): for each equation of the referred system, the respective
right-hand side is always positive when the respective variable is set to zero. For example, in the
case of the equation for d[O(3P)]/dt, setting [O(3P)] equals to zero in the equation (2.4) results in
a right-hand side k1 [NO2]≥ 0.

3.3 Stability Analysis

When analyzing the dynamics of the chemical kinetics of the reactions that characterize the
ozone cycle, its possible steady states must also be considered. A steady state is one in which
time-dependent variables have constant values that make zero all rates of change (or, in this case,
that make zero the reaction rates).

To study the system (2.4)-(2.7) in terms of the qualitative theory of ordinary differential equa-
tions, we denote the time-varying concentrations of the chemical species at the moment t as
C1(t)

.
= [O(3P)](t), C2(t)

.
= [NO](t), C3(t)

.
= [NO2](t) and C4(t)

.
= [O3](t). The equilibrium so-

lutions of (2.4)-(2.7) are those in which the rates of variation of [O(3P)], [NO], [NO2], and [O3]

are all null. Therefore, we have the following system of algebraic equations:

k1 C∗
3 − k2 C∗

1 = 0,

k1 C∗
3 − k3 C∗

2 C∗
4 = 0,

k3 C∗
2 C∗

4 − k1 C∗
3 = 0,

k2 C∗
1 − k3 C∗

2 C∗
4 = 0.

(3.1)

(3.2)

(3.3)

(3.4)

Not only in (3.1)-(3.4), but also in the system (2.4)-(2.7), there are dependency relations between
these equations:

dC1

dt
=− dC3

dt
− dC4

dt
, (3.5)

which couple the temporal variation rates of the variables [O(3P)], [NO2] and [O3], in which
the variation of NO2 concentration depends on the consumption of O(3P) and O3. The other
dependency relation is

dC2

dt
=− dC3

dt
, (3.6)

Trends Comput. Appl. Math., 25 (2024), e01794
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which indicates that NO formation rate is equal to NO2 consumption rate. In practice, it is through
this redundancy that the concentration of one of these gases is experimentally determined based
on the concentration of the other. Thus, by means of equations (3.1) and (3.2), and given that the
parameters ki (i = 1,2,3) are non-zero, we have the equalities:

C∗
1 =

k1

k2
C∗

3 , (3.7)

and
C∗

2C∗
4 =

k1

k3
C∗

3 =⇒ C∗
3 =

k3

k1
C∗

2C∗
4 . (3.8)

Replacing C∗
3 in equation (3.7),

C∗
1 =

k1

k2

k3

k1
C∗

2C∗
4 =

k3

k2
C∗

2C∗
4 . (3.9)

Thus, explicitly, the equilibrium solution of the system is given by

E =

(
k3

k2
C∗

2C∗
4 , C∗

2 ,
k3

k1
C∗

2C∗
4 , C∗

4

)
, (3.10)

where the values of [NO]∗ and [O3]
∗ determine the values of [O(3P)]∗ and of [NO2]

∗. The Jacobian
matrix at equilibrium state E in (3.10) is given by:

J(C∗
1 ,C

∗
2 ,C

∗
3 ,C

∗
4) =


−k2 0 k1 0

0 −k3C∗
4 k1 −k3C∗

2
0 k3C∗

4 −k1 k3C∗
2

k2 −k3C∗
4 0 −k3C∗

2

 , (3.11)

whose eigenvalues are determined by

det(J−λ I) = 0, (3.12)

where, by development into cofactors, we obtain:

λ
2 [k2k3C∗

2 + k2k3C∗
4 + k1k2 +(k1 + k2 + k3(C∗

2 +C∗
4))λ + k1k3C∗

2 +λ
2] = 0. (3.13)

Thus, the characteristic polynomial (3.13) has four roots, two of which are null: λ1,2 = 0. As for
non-null eigenvalues, they are roots of the following polynomial equation:

aλ
2 +bλ + c = 0, (3.14)

whose coefficients are all positive: a .
= 1, b .

= [k1 + k2 + k3(C∗
2 +C∗

4)] and c .
= k1k2 + k2k3(C∗

2 +
C∗

4) + k1k3C∗
2 . Therefore, we use the solver of the second degree equation to characterize the

solutions of the polynomial, ∆ = b2 −4c, given by

∆ = k2
1 +2k1k3C∗

4 + k2
3(C

∗
4 )

2 + k2
2 −2k2k3C∗

2 + k2
3(C

∗
2 )

2 −2k1k2 −2k1k3C∗
2 −2k2k3C∗

4 +2k2
3C∗

2C∗
4 (3.15)

Trends Comput. Appl. Math., 25 (2024), e01794
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Adding and subtracting the element 4k1k3C∗
2 , we have:

∆ = [(k1 + k3C∗
4)− (k2 − k3C∗

2)]
2 −4k1k3C∗

2 . (3.16)

Thus, in addition to the two null eigenvalues, the other two remaining eigenvalues are:

λ3,4 =
−b±

√
∆

2
. (3.17)

If ∆ = 0, λ3,4 =−b/(2), which occurs if

1
k1k3C∗

2

(
(k1 + k3C∗

4)− (k2 − k3C∗
2)

2

)2

= 1. (3.18)

If ∆ < 0, the roots are imaginary and complex conjugates, of the form

λ3,4 =
−b± i

√
|∆|

2
, (3.19)

which occurs if
1

k1k3C∗
2

(
(k1 + k3C∗

4)− (k2 − k3C∗
2)

2

)2

< 1. (3.20)

In both cases, for ∆ = 0 and for ∆ < 0, the real part of the non-null roots is always negative by
the definition of the parameters that define the coefficient b.

When ∆ > 0, as the coefficients a,b and c are positive, then b2 − 4c < b2, since −4c < 0 and
b2 > 0. In this case, √

b2 −4c <
√

b2, (3.21)√
b2 −4c < |b|, (3.22)√
b2 −4c < b, (3.23)

−b+
√

b2 −4c < 0, (3.24)

and, as a > 0, the other eigenvalues are:

λ3,4 =
−b±

√
b2 −4c

2
< 0, (3.25)

which occurs if
1

k1k3C∗
2

(
(k1 + k3C∗

4)− (k2 − k3C∗
2)

2

)2

> 1. (3.26)

To conclude, therefore, we observe that the eigenvalues always have a negative real part or are
null, as compiled in Table 2 where we already use the value a .

= 1 as defined in equation (3.14).

Trends Comput. Appl. Math., 25 (2024), e01794
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Table 2: Eigenvalues associated with the equilibrium state E, Equation (3.10).

Discriminant Condition Eigenvalues

∆ > 0
1

k1k3C∗
2

(
(k1 + k3C∗

4)− (k2 − k3C∗
2)

2

)2

> 1 λ1,2 = 0,λ3,4 =
−b±

√
∆

2

∆ = 0
1

k1k3C∗
2

(
(k1 + k3C∗

4)− (k2 − k3C∗
2)

2

)2

= 1 λ1,2 = 0,λ3,4 =−b
2

∆ < 0
1

k1k3C∗
2

(
(k1 + k3C∗

4)− (k2 − k3C∗
2)

2

)2

< 1 λ1,2 = 0,λ3,4 =
−b± i

√
|∆|

2

As shown in Table 2, given the existence of null eigenvalues, the equilibrium state E of equation
(3.10) is non-hyperbolic. To characterize its stability, we use the Center Manifold Theorem [4,
16], denoting the Jacobian of the function f by f ′.

Theorem 1. (Local Center Manifold Theorem). Let f ∈ Cr(K), where r ≥ 1 and K is an open
subset of Rn containing the origin. Suppose f (0) = 0 and that f ′(0) has c eigenvalues with null
real part and s eigenvalues with negative real part, where c+ s = n. The system (2.4)-(2.7) can
be written in diagonal form as, 

dx
dt

=Cx+F(x,y),

dy
dt

= Py+G(x,y),

(3.27)

(3.28)

where (x,y) ∈Rc ×Rs, C is a square matrix with c eigenvalues with zero real part, P is a square
matrix with s eigenvalues with negative real part, F(0) =G(0) = 0, and F ′(0) =G′(0) = 0. Thus,
there is a δ > 0 and a function h ∈Cr(Nδ (0)) that defines a local center manifold given by

W c
local = {(x,y) ∈ Rc ×Rs|y = h(x) for |x|< δ}, (3.29)

where W c is tangent to the central subspace Ec = {(x,y) ∈ Rc ×Rs|y = 0} and satisfies

h′(x)[Cx+F(x,h(x))]−Ph(x)−G(x,h(x)) = 0, (3.30)

for |x|< δ , and the flow over the center manifold W c(0) is defined by the system of equations

dx
dt

=Cx+F(x,h(x)), (3.31)

Trends Comput. Appl. Math., 25 (2024), e01794
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∀x ∈Rc, with |x|< δ . To use the Center Manifold Theorem at equilibrium state E it is necessary
to make a translation to the origin. To do so, we use the following change of variables:

C11 =C1 −
k3

k2
C∗

2C∗
4 ,

C12 =C2 −C∗
2 ,

C13 =C3 −
k3

k1
C∗

2C∗
4 ,

C14 =C4 −C∗
4 .

(3.32)

(3.33)

(3.34)

(3.35)

Therefore, in these translated variables, the system is given by:

dC11/dt = k1C13 − k2C11,

dC12/dt = k1C13 − k3C12C14 − k3C∗
4C12 − k3C∗

4C14,

dC13/dt = k3C12C14 + k3C∗
4C12 + k3C∗

4C14 − k1C13,

dC14/dt = k2C11 − k3C12C14 − k3C∗
4C12 − k3C∗

2C14,

(3.36)

(3.37)

(3.38)

(3.39)

or in the matrix form:
dC11/dt
dC12/dt
dC13/dt
dC14/dt

=


−k2 0 k1 0

0 −k3C∗
4 k1 −k3C∗

2
0 k3C∗

4 −k1 k3C∗
2

k2 −k3C∗
4 0 −k3C∗

2




C11

C12

C13

C14

+


0

−k3C12C14

k3C12C14

−k3C12C14

 . (3.40)

To determine whether the matrix of the system (3.40) is diagonalizable, we can study the ge-
ometric multiplicity of the null eigenvalue, which has an algebraic multiplicity equal to 2. To
obtain it, we solve the equation Av = λv, where A is the matrix of the system (3.40), λ is the null
eigenvalue and v is the eigenvector associated with λ = 0:

−k2 0 k1 0
0 −k3C∗

4 k1 −k3C∗
2

0 k3C∗
4 −k1 k3C∗

2
k2 −k3C∗

4 0 −k3C∗
2




v1

v2

v3

v4

=


0
0
0
0

 . (3.41)

Solving it, we have:

v =
(

k3

k2
(C∗

2v4 +C∗
4v2),v2,

k3

k1
(C∗

2v4 +C∗
4v2),v4

)
, (3.42)

and thus the eigenvalue λ = 0 has geometric and algebraic multiplicity equal to 2. Next, we study
the three cases for the discriminant that are shown in Table 2.

Case I: λ1,2 = 0 and λ3,4 = (−b±
√

∆)/2, and the matrix of the system (3.40) is diagonalizable.
Thus, there is a basis of vectors that forms the matrix Q, and a diagonal matrix D with the
eigenvalues of A, such that Q−1AQ = D, and the system to be studied is:

du1/dt
du2/dt
du3/dt
du4/dt

=


0 0 0 0
0 0 0 0
0 0 (−b−

√
∆)/2 0

0 0 0 (−b+
√

∆)/2




u1

u2

u3

u4

+
Bk3

2
√

∆


0
0

(−b2 +
√

∆)

(+b2 +
√

∆)

 . (3.43)
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where b2 = k1 + k2 − (C∗
2 +C∗

4)k3, b1 =−k1 + k2 + k3(C∗
2 −C∗

4), and

B =
[ k1u2

C∗
4k3

− C∗
2u1

C∗
4

+2C∗
2k3

( u3

b1 +
√

∆
− u4

−b1 +
√

∆

)]
(u1 +u3 +u4)

and u1,u2,u3,u4 are such that 
C11

C12

C13

C14

= Q


u1

u2

u3

u4

 .

The system (3.43) has a suitable structure to apply Theorem 1. Let C = 0 and

P =

−b−
√

∆

2
0

0
−b+

√
∆

2

 , (3.44)

where we have already shown that (−b−
√

∆)/2 and (−b+
√

∆ )/2 are negative, F = (F1,F2),
where F1(u1,u2,u3,u4) = 0 and F2(u1,u2,u3,u4) = 0, G = (G1,G2), where G1(u1,u2,u3,u4) =

Bk3(−b2 +
√

∆)/(2
√

∆), and G2(u1,u2,u3,u4) =

Bk3(+b2 +
√

∆)/(2
√

∆). Therefore, F(0,0,0,0) = 0, F ′(0,0,0,0) = 0, G(0,0,0,0) = 0 and
G ′(0,0,0,0) = 0.

Defining u3 = φ1(u1,u2) and u4 = φ2(u1,u2), the center manifold of dimension two has the
following form:

M1[φ1,φ2] =
−(−b−

√
∆)φ1

2
− k3

( k1u2

C∗
4 k3

− C∗
2 u1

C∗
4

+
2C∗

2 k3φ1

b1 +
√

∆
− 2C∗

2 k3φ2

−b1 +
√

∆

)
(u1 +φ1 +φ2)(−b2 +

√
∆)

2
√

∆
= 0, (3.45)

M2[φ1,φ2] =
−(−b+

√
∆)φ2

2
− k3

( k1u2

C∗
4 k3

− C∗
2 u1

C∗
4

+
2C∗

2 k3φ1

b1 +
√

∆
− 2C∗

2 k3φ2

−b1 +
√

∆

)
(u1 +φ1 +φ2)(+b2 +

√
∆)

2
√

∆
= 0, (3.46)

In general, from a practical point of view, the following approximation theorem is sufficient to
prove stability [4].

Theorem 2. Let φ : Rn → Rn of class C1 satisfying φ(0) = ∇φ(0) = 0. Let M[φ ](X) = O(|x|q),
x → 0, for some q > 1. Thus, there is a center manifold σ satisfying σ(x)− φ(x) = O(|x|q),
x → 0.

By Theorem 1, the equation does not depend on h and the stability of the system (3.40) is
governed by: (

du1/dt
du2/dt

)
=

(
0
0

)
. (3.47)

Thus, using Theorem 1, the equilibrium state E is stable for ∆ > 0.
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Case II: λ1,2 = 0, λ3 = (−b+ i
√

|∆|)/2 and λ4 = (−b− i
√
|∆|)/2. In this case, the matrix of

the system is also diagonalizable and the system to be studied is:
du1

du2

du3

du4

=


0 0 0 0
0 0 0 0
0 0 (−b+ i

√
|∆|)/2 0

0 0 0 (−b− i
√

|∆|)/2




u1

u2

u3

u4

+
Bk3

2 i
√
|∆|


0
0

(−b2 + i
√

|∆|)
(+b2 + i

√
|∆|)

 . (3.48)

The system (3.48) is written in a suitable structure to apply the Theorem 1.

Let C = 0 and

P =

−b+ i
√
|∆|

2
0

0
−b− i

√
|∆|

2

 , (3.49)

where we have already shown that (−b − i
√
|∆|)/2 and (−b + i

√
|∆|)/2 have a negative

real part, F = (F1,F2), F = (F1,F2), where F1(u1,u2,u3,u4) = 0 and F2(u1,u2,u3,u4) = 0,
G = (G1,G2), where G1(u1,u2,u3,u4) = Bk3(−b2 + i

√
|∆|)/(2i

√
|∆|), and G2(u1,u2,u3,u4) =

Bk3(+b2+ i
√
|∆|)/(2i

√
|∆|). Therefore, F(0,0,0,0) = 0, F ′(0,0,0,0) = 0, G(0,0,0,0) = 0 and

G ′(0,0,0,0) = 0.

Thus, defining u3 = φ1(u1,u2) and u4 = φ2(u1,u2), the center manifold has the following form:

M1[φ1,φ2] =
−(−b+ i

√
|∆|)φ1

2
− k3

( k1u2

C∗
4 k3

− C∗
2 u1

C∗
4

+
2C∗

2 k3φ1

b1 + i
√
|∆|

− 2C∗
2 k3φ2

−b1 + i
√
|∆|

)
(u1 +φ1 +φ2)(−b2 + i

√
|∆|)

2i
√

|∆|
= 0, (3.50)

M2[φ1,φ2] =
−(−b− i

√
|∆|)φ2

2
− k3

( k1u2

C∗
4 k3

− C∗
2 u1

C∗
4

+
2C∗

2 k3φ1

b1 + i
√
|∆|

− 2C∗
2 k3φ2

−b1 + i
√
|∆|

)
(u1 +φ1 +φ2)(+b2 + i

√
|∆|)

2i
√

|∆|
= 0, (3.51)

By Theorem 1, the equation governing the solution of the system (3.40) is:(
du1/dt
du2/dt

)
=

(
0
0

)
. (3.52)

Thus, the stability of the system at the origin. Therefore, by Theorem 1, the equilibrium state E
is also stable for ∆ < 0.

Summarizing, except in the case where the discriminant ∆ is zero (see Table 2), we have proved
that the equilibrium state E given in equation (3.10) is locally asymptotically stable.

3.4 Numerical Results

To illustrate the analytical results practically, the system of ordinary differential equations of
the tropospheric ozone cycle was also solved numerically. To this end, a computational imple-
mentation was carried out for the numerical solution of the system of ordinary differential equa-
tions(2.4), (2.5), (2.6) and (2.7) The system was treated as an initial value problem in which the
initial concentration of O(3P), NO, NO2, and O3 was chosen as being zero, 1012, 1010, and zero
molecules/cm3, respectively. These values are indicated in the reference [9], Problem 12.3, Page

Trends Comput. Appl. Math., 25 (2024), e01794
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443. Moreover, still based on this reference (Table 12.3, Page 443), for a temperature T = 298 K,
the values assigned for the kinetic parameters were: k1 = 1.7 · 10−2 s−1, k2 = 1.4 · 103 · e(

1175
T )

cm3 molecules−1 s−1 and k3 = 1.8 · 10−12 · e(
−1370

T ) cm3 molecules−1 s−1. From the point of
view of the numerical solution, the differences of several orders of magnitude in the values of
these parameters present a characteristic known as (stiffness), which requires a careful and more
sophisticated choice than the 4th-order Runge-Kutta method for the realization of the numerical
solution of the model [5, 23].

To this end, we used the ode routine of the R package deSolve, which can identify and numeri-
cally solve ODE (stiff ) systems. Based on the graph shown in Figure 1, as NO2 is consumed, NO
and O3 are formed. In addition, the equilibrium value is reached quickly, approximately at t = 200
seconds. Furthermore, NO2 and O3 concentrations approximate when stability is reached, where
NO2 consumption is equivalent to the O3 formed. In other words, to have ozone accumulation
in the troposphere, other oxidants must participate in the reactions. The curves shown in Figure
1 are the same as the reference cited above (Figure 12.5, Page 443, [9]).

Figure 1: Numerical solution of the mathematical model presented and defined by equations
(2.4), (2.5), (2.6), and (2.7) for the tropospheric ozone cycle. The scale of [NO] is the vertical
axis on the right, and the value of [O(3P)] is presented with a multiplicative factor equal to 106.

Finally, using the initial condition and the parameter values, we obtained the numerical station-
ary solution shown in Figure 1: (1.2194 · 103,1.0048 · 1012,5.1786 · 109,4.8213 · 109), and the
equilibrium solution given by (3.10) is (1.2173 · 103,1.0048 · 1012,5.1699 · 109,4.8213 · 109).
Using Table 2, and with the referred inequality being less than the unity, the eigenvalues are
λ1,2 = 0, λ3 =−10573.3, and λ4 =−61625.7. According to the theoretical results, this equilib-
rium solution is stable. Thus, with this computational simulation, we can graphically verify the
fulfillment of the theoretical result that was obtained analytically.

Trends Comput. Appl. Math., 25 (2024), e01794



i
i

“1794” — 2024/12/25 — 20:02 — page 14 — #14 i
i

i
i

i
i

14 A SIMPLIFIED KINETIC MODEL FOR THE TROPOSPHERIC OZONE CYCLE

4 CONCLUSION

In this work, we present a qualitative study of a mathematical model of ordinary differential
equations in time that characterizes the kinetics of the chemical reactions of the ozone cycle in
the troposphere. The only equilibrium state of the system is non hyperbolic, and so we used the
Center Manifold Theorem to study its local stability. We present complete analytical results that
establish that the steady state is stable for any values of the kinetic parameters, which was also
corroborated by the numerical solution of the resulting stiff problem. In addition to establishing
this unprecedented result of stability, another conclusion is that the simplified model of ozone ki-
netics with fixed kinetic parameters does not allow the behavior of sustained oscillatory solutions
for the referred concentrations of pollutants, requiring other ingredients for this to be feasible.
In future works, we intend to address the problem of estimating mathematical model parameters
from real data.
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