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ABSTRACT. We present two slightly different constructions of a SIR model in which both the time taken
to remove the individual from the infectious compartment and the infectivity have a memory according to
Mittag-Leffler distributions. The second construction clearly points out where the proposed generalizations
are acting, starting from the classic SIR model. Using integrodifferential techniques, we state and demon-
strate novel analytically results on positivity, monotonicity in limiting case, and equilibrium points. The
results are also verified numerically.
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1 INTRODUCTION

Fractional differential equations are extensively applied in memory-dependent mathematical
models. In fact, the Fractional Calculus includes the possibility of considering the memory of
the studied phenomenon, that is, the dependence on previous stages, once its operators are non
local. Most often, a fractional model is designed in an ad hoc conception: a classical model is
generalized by allowing the integer order of the derivative to be arbitrary. However, this prac-
tice can lead to some physical misinterpretation, and previous works study manners to construct
fractional models with biological meaning [1, 2, 3, 17].

This work aims to complete previous discussions of fractional SIR models with Mittag-Leffler
memory, presenting the detailed proofs of our results in [16]. To this aim, in Subsection 2.1, we
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2 POSITIVITY AND EQUILIBRIUM IN A FRACTIONAL SIR MODEL

present an overview of the work [3], a recent and unusual SIR model constructed by Continu-
ous Time Random Walks (CTRW). Both the time of removal of the individual from the infec-
tious compartment and the infectivity are age-dependent and follow a Mittag-Leffler distribution,
causing the Riemann-Liouville fractional derivative to arise throughout Laplace Transform tech-
niques. In Subsection 2.2, we show how to obtain from the theory presented in [15] the same
fractional model constructed with CTRW. It shows clearly where the generalizations proposed
are acting, from the viewpoint of the classical SIR model. Then, we propose and demonstrate
new results about positivity, monotonicity (Section 3), and equilibrium points (Section 4).

MATLAB simulations with codes proposed in [17] and other references verify the theory
numerically. We use basic definitions and results of Fractional Calculus from classic refer-
ences [6, 12, 14, 20, 22, 23]. We denote I1−α the Riemann-Liouville integral and D1−α the
Riemann-Liouville derivative operators with initial point zero.

2 THE MODEL

The construction proposed in [3] is studied in details in [17, 19] and correlated references. Here,
we present a brief overview, for completeness.

2.1 An overview

The main idea is that, if there are S(t) susceptible people at time t in a population of size N, then
the expected number of new infections per infected individual is given by σ(t, t ′) S(t)

N ∆T in a step
time ∆T . Here, σ(t, t ′) is the transmission function of an individual first infected at time t ′ < t.

The survival function Φ(t, t ′) gives the probability that a person first infected at time t ′ < t stays
infected at time t. Considering that there is no disease before t = 0, the flow of individuals into
infectious compartment I in time t is recursively given by

q+(I, t) =
∫ t

0
σ(t, t ′)

S(t)
N

Φ(t, t ′)q+(I, t ′)dt ′+ i0σ(t,0)
S(t)
N

Φ(t,0), (2.1)

where i0 is the initial condition: the quantity of infectious that emerged in time 0.

The transmission function σ(t, t ′) is dependent of both the present t, due, e.g., to cultural or
containment measures, and the age of infection t − t ′. The dependence of t is expressed by an
extrinsic infectivity ω , independent of the individual. On the other hand, there is an intrinsic
infectivity ρ dependent of age. So,

σ(t, t ′) = ω(t)ρ(t − t ′). (2.2)

For the survival function, it is assumed that natural death and recuperation/death by disease of an
infected individual are independent. Then,

Φ(t, t ′) = φ(t − t ′)θ(t, t ′), (2.3)

Trends Comput. Appl. Math., 25 (2024), e01789
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where φ(t − t ′) is the probability that an individual first infected in t ′ is still with the disease at
time t. Furthermore, θ(t, t ′) is the probability that an individual first infected in t ′ has not yet died
a natural death by time t, being given by

θ(t, t ′) = e−
∫ t
t′ γ(u)du, (2.4)

where γ is the vital rate.

Individuals in compartment I at time t must have entered this compartment at some previous
time and remained there until t. Therefore, we can express the number of infected individuals as
follows:

I(t) = Φ(t,0)i0 +
∫ t

0
Φ(t, t ′)q+(I, t ′)dt ′. (2.5)

Writing ψ(t) =−dφ(t)/dt, we derive Eq. (2.5) through Leibniz’s Rule, obtaining

dI(t)
dt

= ω(t)
S(t)
N

(∫ t

0
ρ(t − t ′)Φ(t, t ′)q+(I, t ′)dt ′+ρ(t)Φ(t,0)i0

)
−
∫ t

0
ψ(t − t ′)θ(t, t ′)q+(I, t ′)dt ′−ψ(t)θ(t,0)i0 − γ(t)I(t). (2.6)

The dependency on q+(I, t ′) is removed by defining memory kernels for infectivity and recovery.
Henceforth we consider i0 = 1 for simplicity. Eq. (2.5) can be rewritten as

I(t)
θ(t,0)

−φ(t) =
∫ t

0
φ(t − t ′)

q+(I, t ′)
θ(t ′,0)

dt ′. (2.7)

Using the Laplace transform in the first integral of (2.6) we can write

L {ρ(t)φ(t)}L
{

q+(I, t)
θ(t,0)

}
= L

{∫ t

0
KI(t − t ′)

(
I(t ′)

θ(t ′,0)

)
dt ′−ρ(t)φ(t)

}
, (2.8)

where it is defined the infectivity memory kernel

KI(t) = L −1
{

L {ρ(t)φ(t)}
L {φ(t)}

}
. (2.9)

In the same way, based in the second integral of Eq. (2.6),

L {ψ(t)}L
{

q+(I, t)
θ(t,0)

}
= L

{∫ t

0
KR(t − t ′)

(
I(t ′)

θ(t ′,0)

)
dt ′−ψ(t)

}
, (2.10)

where it is defined the recovery memory kernel by

KR(t) = L −1
{

L {ψ(t)}
L {φ(t)}

}
. (2.11)

Trends Comput. Appl. Math., 25 (2024), e01789
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4 POSITIVITY AND EQUILIBRIUM IN A FRACTIONAL SIR MODEL

Fractional derivatives are incorporated into the model by choosing ψ(t) with potential law and
ρ(t) related to the choice of ψ(t):

ψ(t) =
tα−1

τα
Eα,α

(
−
( t

τ

)α
)
, (2.12)

for 0 < α ≤ 1, where τ is a scale parameter. The corresponding survival function is

φ(t) = Eα,1

(
−
( t

τ

)α
)
. (2.13)

We can calculate the Laplace transform of the removal memory kernel defined by the Mittag-
Leffler function, obtaining:

L {KR(t)}=
L {ψ(t)}
L {φ(t)}

= s1−α
τ
−α . (2.14)

The Laplace transform of the kernel implies that a convolution with the recovery memory kernel
can be written as ∫ t

0
KR(t − t ′)

I(t ′)
θ(t ′,0)

dt ′ = τ
−α D1−α

(
I(t)

θ(t,0)

)
(2.15)

Another fractional derivative is incorporated into the infectivity memory kernel by considering

ρ(t) =
1

φ(t)
tβ−1

τβ
Eα,β

(
−
( t

τ

)α
)
. (2.16)

Since ρ(t) ≥ 0 is necessary, we take 0 < α ≤ β ≤ 1. Using Eq. (2.16), we obtain the Laplace
transform of the infectiousness kernel:∫ t

0
KI(t − t ′)

I(t ′)
θ(t ′,0)

dt ′ = τ
−β D1−β

(
I(t)

θ(t,0)

)
. (2.17)

Substituting Eqs. (2.15) and (2.17) into the master equation Eq.(2.6) and rewriting, we obtain a
fractional SIR model:

S′(t) = γ(t)N − ω(t)S(t)θ(t,0)
Nτβ

D1−β

(
I(t)

θ(t,0)

)
− γ(t)S(t), (2.18)

I′(t) =
ω(t)S(t)θ(t,0)

Nτβ
D1−β

(
I(t)

θ(t,0)

)
− θ(t,0)

τα
D1−α

(
I(t)

θ(t,0)

)
− γ(t)I(t), (2.19)

R′(t) =
θ(t,0)

τα
D1−α

(
I(t)

θ(t,0)

)
− γ(t)R(t). (2.20)

Once there is no disease before time 0, the initial condition must be in the form S(0) = N −
i0, I(0) = i0,R(0) = 0.

Trends Comput. Appl. Math., 25 (2024), e01789
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2.2 Another approach for constructing a fractional SIR model

The function ψ(t) can be related with the continuous random variable X that gives the individ-
ual’s waiting time in infectious compartment despite the vital dynamics. To see this, note that
the cumulative distribution of X is F(t) = P(X ≤ t) = 1− φ(t). Thus, the probability density
function of X is ψ(t) = −dφ(t)/dt. The probability distribution F is a Mittag-Leffler distribu-
tion F(t;α,τ) = 1−Eα

(
−
( t

τ

)α
)

. If α < 1, the expectation is infinite. This can represent, for
instance, cases in which long waiting times are not really improbable. However, if α = 1, it repre-
sents an exponential distribution. For waiting times exponentially distributed, the first moment of
the random variable X exists, and τ is exactly the mean waiting time in infectious compartment
despite the vital dynamics. It is worth to note that, if γ(t) ≡ γ > 0, the effective mean waiting
time in infectious compartment, described by both the effects of recovery and natural death, is
finite and given by γα−1/(γα + τ−α) for any α ∈ (0,1] [15]. In this Section, we show how to
obtain from the presented theory in [15] the same fractional model constructed with CTRW in
the previous Section.

The compartmental SIR (Susceptible-Infected-Removed) model was introduced by Kermack and
McKendrick in 1927 [11]. With constants rates of vital dynamics (γ), infectivity (σ ) and mean
removal time (τ), the SIR model can be written as

S′(t) = γN −σ
S(t)
N

I(t)− γS(t),

I′(t) = σ
S(t)
N

I(t)− 1
τ

I(t)− γI(t),

R′(t) = 1
τ

I(t)− γR(t).

(2.21)

From the second equation, we can write

I =
∫ t

0
e−γ(t−t ′)e−(t−t ′)/τ

σ
S(t ′)

N
I(t ′)dt ′+ e−γte−t/τ i0. (2.22)

We generalize e−t/τ , which indicates an exponentially distributed waiting time in the infectious
compartment, with a Mittag-Leffler probability Eα

(
−
( t

τ

)α
)

.

This generalization constructs a fractional SIR model with general remotion time as in [2]. How-
ever, as seen in previous Subsection, in [3] there is also a generalization in the transmission
function: in fact, the infectivity σ is seen as a function with an extrinsic term ω(t), depending
on the present time (for instance, cultural and political measures), and an intrinsic term ρ(t − t ′),
depending on the age of infection:

σ(t, t ′) = ω(t)ρ(t − t ′). (2.23)

If there is no memory, i.e., if the force of infectivity is the same along the days of infection, so ρ

is a constant.

Note that a people that becomes infectious in a time t ′ is still infectious in t if:

Trends Comput. Appl. Math., 25 (2024), e01789
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6 POSITIVITY AND EQUILIBRIUM IN A FRACTIONAL SIR MODEL

• It is alive (probability e−γ(t−t ′)), and

• It is not removed (probability Eα

(
−
(
(t−t ′)

τ

)α)
).

In this case, its infectivity is ω(t)ρ(t − t ′). So, the flux of new infectious is given recursively by

q+(t) =
S(t)
N

ω(t)
∫ t

0
e−γ(t−t ′)Eα

(
−
(
(t − t ′)

τ

)α)
ρ(t − t ′)q+(t ′)dt ′

+
S(t)
N

ω(t)e−γtEα

(
−
( t

τ

)α
)

ρ(t)i0. (2.24)

Aiming to use the Laplace Transform of Mittag-Leffler functions in Eq.(2.24) and considering
that the intrinsic infectivity is positive and monotonically decreasing with time, it is proposed

ρ(t) =
1

Eα

(
−
( t

τ

)α
) tβ−1

τβ
Eα,β

(
−
( t

τ

)α
)
, (2.25)

with 0 < α ≤ β ≤ 1. Then,

q+(t) =
S(t)
N

ω(t)
∫ t

0
e−γ(t−t ′) (t − t ′)β−1

τβ
Eα,β

(
−
(
(t − t ′)

τ

)α)
q+(t ′)dt ′

+
S(t)
N

ω(t)e−γt tβ−1

τβ
Eα,β

(
−
( t

τ

)α
)

i0. (2.26)

Note that ∫ t

0
e−γ(t−t ′) (t − t ′)β−1

τβ
Eα,β

(
−
(
(t − t ′)

τ

)α)
q+(t ′)dt ′ (2.27)

=
e−γt

τβ
L −1

[
L

[
tβ−1Eα,β

(
−
( t

τ

)α
)]

L
[
eγtq+(t)

]]
(2.28)

=
e−γt

τβ
L −1

[
sα−β

sα + τ−α
L
[
eγtq+(t)

]]
(2.29)

=
e−γt

τβ
L −1

[
s1−β L

[∫ t

0
Eα

(
−
(
(t − t ′)

τ

)α)
eγt ′q+(t ′)dt ′

]]
(2.30)

=
e−γt

τβ
D1−β (eγtY ), (2.31)

where

Y (t) =
∫ t

0
Eα

(
−
(
(t − t ′)

τ

)α)
e−γ(t−t ′)q+(t ′)dt ′. (2.32)

Trends Comput. Appl. Math., 25 (2024), e01789
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Note that Y indicates the summation of people that entered in I compartment in each 0 < t ′ ≤ t
and are still alive and infectious at t. So,

I(t) = Eα

(
−
( t

τ

)α
)

e−γt i0 +Y (t)

= Eα

(
−
( t

τ

)α
)

e−γt i0 +
∫ t

0
Eα

(
−
(
(t − t ′)

τ

)α)
e−γ(t−t ′)q+(t ′)dt ′. (2.33)

This implies that

D1−β (eγtY ) = D1−β (eγt I)− i0D1−β

(
Eα

(
−
( t

τ

)α
))

(2.34)

= D1−β (eγt I)− i0tβ−1Eα,β

(
−
( t

τ

)α
)
. (2.35)

Follows then from (2.26) and (2.35) that

q+(t) =
S(t)ω(t)e−γtD1−β (eγt I)

Nτβ
. (2.36)

Finally, deriving (2.33) by Leibniz rule and using

Eα,α (z) =
∞

∑
k=0

k!
Γ(αk+α)

zk

k!
=

∞

∑
k=0

(αk+α)k!
Γ(αk+α +1)

zk

k!
= αE2

α,1+α (z) , (2.37)

we get

I′(t) = q+(t)− e−γtD1−α(eγt I)
τα

− γI(t) (2.38)

=
S(t)ω(t)e−γtD1−β (eγt I)

Nτβ
− e−γtD1−α(eγt I)

τα
− γI(t). (2.39)

This is the master equation of the fractional SIR model (2.18)-(2.20) with constant γ(t)≡ γ:

S′(t) = γN − S(t)ω(t)e−γtD1−β (eγt I)
Nτβ

− γS(t), (2.40)

I′(t) =
S(t)ω(t)e−γtD1−β (eγt I)

Nτβ
− e−γtD1−α(eγt I)

τα
− γI(t), (2.41)

R′(t) =
e−γtD1−α(eγt I)

τα
− γR(t). (2.42)

In next Section, we demonstrate the non-negativity of the solution. Furthermore, we show that,
in the limiting case where the vital dynamics is null, the compartments S and R are monotone.

3 MONOTONICITY IN THE LIMITING CASE AND NON-NEGATIVITY

The solution of the fractional SIR model constructed in previous Section is expected to be
non-negative, since the compartments reproduce groups of people. In fact, we demonstrate the
following result:

Trends Comput. Appl. Math., 25 (2024), e01789
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8 POSITIVITY AND EQUILIBRIUM IN A FRACTIONAL SIR MODEL

Proposition 1.

Let γ(t) ≡ γ ≥ 0. Admitting that the solution of the system (2.18)-(2.20) exists uniquely with
initial conditions S(0)≥ 0, I(0) = i0 > 0 and R(0) = N −S(0)− I(0)≥ 0, and is continuous for
t > 0, then:

• S(t), I(t),R(t), D1−β

(
I(t)

θ(t,0)

)
and D1−α

(
I(t)

θ(t,0)

)
are non-negative functions;

• S(t), I(t),R(t)≤ N for all t.

Proof. First, we prove the positivity of S(t) for both γ > 0 and γ = 0. Initially, consider γ > 0.
Suppose absurdly that the set {t > 0; S(t)< 0} is not empty. Let T > 0 be the infimum of this set.
Once the solution is continuous, we have S(T ) = 0. From Eq. (2.18), we have S′(T ) = γN > 0.
Thus, there is an interval (T,T + ε) such that S′(T ) > 0 and S is increasing in this interval,
absurd, since we define T the infimum of the set {t > 0; S(t)< 0}, and so there is a sequence in
{t > 0; S(t)< 0} that converges to T from the right. Therefore, S(t)> 0 for all t.

On the other hand, if γ = 0, we can write

S′(t) =−q+(I, t) =−
∫ t

0
σ(t, t ′)

S(t)
N

Φ(t, t ′)q+(I, t ′)dt ′− i0σ(t,0)
S(t)
N

Φ(t,0), (3.1)

S′(t)
S(t)

=
1
N

∫ t

0
σ(t, t ′)Φ(t, t ′)S′(t ′)dt ′− 1

N
i0σ(t,0)Φ(t,0), (3.2)

log(|S(s)|) = 1
N

∫ s

0

[∫ t

0
σ(t, t ′)Φ(t, t ′)S′(t ′)dt ′− i0σ(t,0)Φ(t,0)

]
dt + log(S(0)), (3.3)

|S(s)|= e f (s)S(0) =

{
e f (s)S(0), S(0)≥ 0

−e f (s)S(0), S(0)< 0
, (3.4)

where

f (s) =
1
N

∫ s

0

[∫ t

0
σ(t, t ′)Φ(t, t ′)S′(t ′)dt ′− i0σ(t,0)Φ(t,0)

]
dt. (3.5)

Once S(0)≥ 0, Eq.(3.4) implies that S(t)≥ 0 for all t.

Given the positivity of S(t), as σ and Φ are positive functions, Eq. (2.1) or Eq. (2.26) gives
q+(I, t)≥ 0 for all t. From Eq. (2.5) or Eq. (2.33) it follows directly that I(t)> 0 for all t. Now,
applying the inverse Laplace Transform to Eq. (2.8), we have∫ t

0
KI(t − t ′)

I(t ′)
θ(t ′,0)

dt ′ =
∫ t

0
ρ(t − t ′)φ(t − t ′)

q+(I, t ′)
θ(t ′,0)

dt ′+ρ(t)φ(t)i0. (3.6)

It follows from the positivity of ρ,φ ,θ and q+(I, t) that∫ t

0
KI(t − t ′)

I(t ′)
θ(t ′,0)

dt ′ > 0, (3.7)

Trends Comput. Appl. Math., 25 (2024), e01789
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for all t. Therefore, from Eq. (2.17), we have D1−β

(
I(t)

θ(t,0)

)
> 0, for all t. The same can be

concluded for D1−α

(
I(t)

θ(t,0)

)
.

Finally, suppose absurdly that the set {t > 0; R(t)< 0} is not empty. Let T ≥ 0 be the infimum
of this set. Once the solution is continuous and R(0)≥ 0, we must have R(T ) = 0. Then,

R′(T ) =
θ(T,0)

τα

(
D1−α

(
I(t)

θ(t,0)

))
(T )> 0. (3.8)

Thus, there is an interval (T,T +ε) such that R′(t)> 0 and R is increasing in this interval, absurd,
since there is a sequence in {t > 0; R(t) < 0} that converges to T from the right. Therefore,
R(t)≥ 0 for all t.

Since S(t) + I(t) + R(t) = N, it follows from S(t), I(t), R(t) ≥ 0 that S(t), I(t), R(t) ≤ N,
completing the proof. □

For the limit case in which γ = 0, we also have the following result:

Proposition 2. Considering the limit system (2.18)-(2.20) for which γ(t) ≡ 0, the functions S(t)
and R(t) are monotone decreasing and increasing, respectively .

Proof. It follows directly from S(t), D1−β

(
I(t)

θ(t,0)

)
and D1−α

(
I(t)

θ(t,0)

)
be non-negative that, if

γ(t)≡ 0, then S′(t)≤ 0 and R′(t)≥ 0. Thus S and R are monotonically decreasing and increasing,
respectively. □

We note that this condition has good epidemiological agreement, but we cannot guarantee this
for ad hoc SIR fractional models, where the integer order derivative is replaced by the Caputo
derivative: 

CDα
0+S(t) =−σ

S(t)
N

I(t),

CDα
0+I(t) = σ

S(t)
N

I(t)− 1
τ

I(t),

CDα
0+R(t) = 1

τ
I(t).

(3.9)

In fact, Figure 1 indicates the solution of the system (3.9). We illustrate the non-monotonicity
of the compartments S and R in the model without vital dynamics. This problem is not solved
by balancing the units of the parameters initially considered. With the same orders, the correc-
tions would transform them numerically into other constants, but the same in each compartment.
On the other hand, in Figure 2 the system (2.18)-(2.20) is numerically solved. We observe that
monotonicity remains in the model with arbitrary orders, as observed in Proposition 2, even if
α ̸= β . Thus, the oscillations that can appear in this model are due exclusively to vital dynam-
ics. We use a population N0 = 106, initial conditions S(0) = N0 −1, I(0) = 1 and R(0) = 0 and
dt = 0.1 for both simulations. Our previous works [13, 18] present a deep discussion about the
ad hoc fractionalization (3.9).

Trends Comput. Appl. Math., 25 (2024), e01789
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10 POSITIVITY AND EQUILIBRIUM IN A FRACTIONAL SIR MODEL
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Figure 1: Non-monotonic behavior of S and R
in system (3.9).
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Figure 2: Monotonicity of S and R in (2.18)-
(2.20) for γ(t)≡ 0.

Next Section deals with equilibrium points. In particular, we study its relationship with the basic
reproduction number and approaches to stability analysis.

4 EQUILIBRIUM POINTS AND STABILITY

Classical epidemiological ODEs’ model as (2.21) are time invariant [7]. Their local behavior
allows the parameters to define the disease dynamics independently of the time in which one
begins the modeling. However, this is not valid in model (2.18)-(2.20). Different pasts modify
the future dynamics. Its non-local behavior also implies unexpected behavior of the reproduction
number ℜ(t). The reproduction number in t can be defined as the expected number of individuals
infected by a person first infected in time t. The basic reproduction number is this number for
t = 0, i.e., the average number of secondary infections that occur when an infectious individual
is introduced into a completely susceptible population [9]. The definition of the reproduction
numbers in the proposed model is non intuitive. We mention that, in [3], it is proposed an integral
construction for the basic reproduction number. In [19], we extend the reproduction number
proposal to any time t and also propose the S-variable reproduction numbers. These discussions
have important implications in equilibrium analysis and peak conditions. For instance, the peak
does not occur when ℜ(t) = 1, nor ℜS(t) = 1 [19].

For this work proposal, we only use the basic reproduction number [3]:

ℜ0 =
∫

∞

0
σ(t)Φ(t)dt =

ωγα−β

τβ γα + τβ−α
. (4.1)

Trends Comput. Appl. Math., 25 (2024), e01789
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Returning to the equilibrium calculation, we consider γ(t)≡ γ constant, so θ(t,0) = e−γt . Taking
the limit when t →∞, we calculate the limits of the form lim

t→∞
e−γtD1−α(I(t)eγt) according to [19].

Assuming lim
t→∞

ω(t) = ω
∗, we obtain a disease-free state,

S∗ = N, I∗ = 0, R∗ = 0, (4.2)

and, if ω∗ > 0, an endemic state:

S∗ =
((τγ)β−α +(τγ)β )N

ω∗ , I∗ =
N(τγ)α

1+(τγ)α
− N(τγ)β

ω∗ ,

R∗ =
N

1+(τγ)α
− N(τγ)β−α

ω∗ . (4.3)

Particularly, when ω(t)≡ ω , this result is the same as that obtained in [3]. Note that the viability
of the endemic equilibrium (4.3) requires

ω
∗ > (τγ)β−α +(τγ)β , (4.4)

which is related to the basic reproduction number (4.1).

In fact, if ω(t)≡ ω , the criterion for the viability given in Eq. (4.4) can be rewritten as ℜ0 > 1.
Furthermore, the value S∗ of the endemic state given in (4.3) is of the form S∗ = N/ℜ0. Thus,
ℜ0 has an essential relationship with the final size of the infection.

Until now, we have proven that if there are asymptotically stable equilibria for the case γ > 0,
then they are given by Eq.(4.2)-(4.3). The limiting case in which γ = 0 is studied in [16]:

Theorem 1. If ω(t)≡ ω , γ(t)≡ 0, i0 > 0 and α = β in the system (2.18)-(2.20), then the solution
asymptotically approaches equilibrium (S, I,R)∞, where

R∞ = N +
N
ω

W0

(
−S0ωe−ω

N

)
, (4.5)

and

S∞ = S0 exp
(
− ω

N
R∞

)
=−N

ω
W0

(
−S0ωe−ω

N

)
, I∞ = N −S∞ −R∞ = 0. (4.6)

W0 represents the main branch of Lambert’s function W [5], and S0 = S(0).

Proof. See [16]. □

For γ > 0, the disease-free state is expected to be an asymptotically stable equilibrium when
ω∗ < (τγ)β−α +(τγ)β , while the endemic state is expected to be asymptotically stable if ω∗ >

(τγ)β−α +(τγ)β . These hypothesis are formulated, for constant ω(t), in [3].

Trends Comput. Appl. Math., 25 (2024), e01789
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12 POSITIVITY AND EQUILIBRIUM IN A FRACTIONAL SIR MODEL

To develop our results, based on [10], we need the integral forms of the infectious and recovered
compartments:

I(t) = Φ(0, t)i0 +
∫ t

0
Φ(t, t ′)

ω(t ′)S(t ′)θ(t ′,0)
Nτβ

(
D1−β

(
I(t)

θ(t,0)

))
(t ′)dt ′, (4.7)

R(t) = F(t)θ(t,0)i0 +
∫ t

0
F(t − t ′)θ(t, t ′)

ω(t ′)S(t ′)θ(t ′,0)
Nτβ

(
D1−β

(
I(t)

θ(t,0)

))
(t ′)dt ′, (4.8)

where F(t) = 1−φ(t).

The following results are demonstrated:

Theorem 2. If ω(t) is bounded with lim
t→∞

ω(t) = ω
∗, γ(t) ≡ γ and β = 1 in the system (2.18)-

(2.20), the disease-free equilibrium of Eq. (4.2) is globally asymptotically stable if ω∗ <

(τγ)1−α +(τγ).

Proof. We define the constant A such that

A =
∫

∞

0

ω∗

τ
Φ(t)dt =

ω∗

(τγ)+(τγ)1−α
< 1. (4.9)

Let J = lim
t→∞

sup I(t) and suppose absurdly that J > 0. Thus, it is possible to choose ε small

enough such that 2ε +A(1+ε)(J+ε)< J. Indeed, defining the continuously increasing function
E(t) = 2t +A(1+ t)(J + t), we have E(0) = AJ < J and lim

t→∞
E(t) = ∞, so there is εJ > 0 such

that E(εJ) = J. Therefore, we just need to choose ε ∈ (0,εJ).

We have lim
t→0

Φ(t,0)i0 = 0. Furthermore, we know that lim
t→∞

sup I(t) = J and lim
t→∞

ω(t) =ω
∗ . Thus,

choosing ε , we can choose a time t1 > 0 sufficiently large such that Φ(t,0)i0 < ε/2, I(t)< J+ε

and ω(t)< (1+ε)ω∗ for t > t1. Choosing t1, since lim
t→0

θ(t,0) = 0, we can choose t2 large enough

such that Nt1θ(t,0)ωm/τ < ε for t > t2, where ωm is the maximum value reached by ω(t). So,
for t > t1 + t2, we have t − t1 > t2 and

I(t) = Φ(t,0)i0 +
∫ t

0
Φ(t, t ′)

ω(t ′)S(t ′)I(t ′)
Nτ

dt ′

<
ε

2
+
∫ t1

0
Φ(t, t ′)

ω(t ′)S(t ′)I(t ′)
Nτ

dt ′+
∫ t

t1
Φ(t, t ′)

ω(t ′)S(t ′)I(t ′)
Nτ

dt ′. (4.10)

Now, we remember that S(t), I(t)≤ N. In the first integral we use Φ(t,0) = φ(t)θ(t,0)≤ θ(t,0).
In the second integral, we use that I(t)< J+ ε and ω(t)< (1+ ε)ω∗ for t > t1, obtaining

I(t)<
ε

2
+N

∫ t1

0
θ(t, t ′)

ωm

τ
dt ′+(J+ ε)(1+ ε)

∫ t

t1
Φ(t, t ′)

ω∗

τ
dt ′. (4.11)

Trends Comput. Appl. Math., 25 (2024), e01789
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Finally, as t − t1 > t2, we have θ(t, t1) < θ(t2). Furthermore, by the definition of A, we have∫ t
t1 Φ(t, t ′)ω∗/τdt ′ < A. Therefore, by choosing ε, t1 and t2, it follows that, for all t > t1 + t2, we

have

I(t)<
ε

2
+Nt1θ(t2)

ωm

τ
+A(1+ ε)(J+ ε)

<
3ε

2
+A(1+ ε)(J+ ε)< J− ε

2
, (4.12)

contradiction. Therefore, J = 0 and lim
t→∞

I(t) = 0.

Remembering that, under the conditions of the statement, we have

S′(t) = γN − ω(t)S(t)I(t)
Nτ

− γS(t), (4.13)

then lim
t→∞

I(t) = 0 implies that lim
t→∞

S(t) = N. Therefore, lim
t→∞

R(t) = lim
t→∞

(N − I(t)−S(t)) = 0. □

Theorem 3. If ω(t)≡ ω , γ(t)≡ γ and β = 1 in the system (2.18)-(2.20), the endemic equilibrium
of Eq. (4.3) is locally asymptotically stable whenever it is feasible, that is, when ω > (τγ)1−α +

(τγ).

Proof. We have ℜ0 =
∫

∞

0 σ(t)Φ(t,0)dt = N/S∗. We remember that if β = 1 and ω is constant,
then σ(t)≡ ω/τ . Thus,

I∗ =
∫

∞

0
σ(t ′)Φ(t ′)dt ′ · S∗

N
I∗ =

∫
∞

0
Φ(t ′)

S∗I∗ω

Nτ
dt ′

=
∫ t

0
Φ(t − t ′)

S∗I∗ω

Nτ
dt ′+

∫
∞

t
Φ(t ′)

S∗I∗ω

Nτ
dt ′. (4.14)

Now, we observe that∫
∞

0

ω

τ
F(t ′)θ(t ′,0)dt ′ =

∫
∞

0

ω

τ
θ(t ′,0)dt ′− N

S∗
=

ω

τγ
− N

S∗

=
N
S∗

(τγ)−α = (τγ)−α

∫
∞

0

ω

τ
Φ(t ′)dt ′, (4.15)

i.e,

N
S∗

=
∫

∞

0

ω

τ
Φ(t ′)dt ′ = (τγ)α

∫
∞

0

ω

τ
F(t ′)θ(t ′,0)dt ′. (4.16)

Returning to Eq. (4.3), we note that R∗ = (τγ)−α I∗. So, we write

R∗ = (τγ)−α(τγ)α

∫
∞

0

ω

τ
F(t ′)θ(t ′,0)dt ′ · S∗

N
· I∗ =

∫
∞

0
F(t ′)θ(t ′,0)

S∗I∗ω

Nτ
dt ′

=
∫ t

0
F(t − t ′)θ(t, t ′)

S∗I∗ω

Nτ
dt ′+

∫
∞

t
F(t ′)θ(t ′,0)

S∗I∗ω

Nτ
dt ′. (4.17)

Trends Comput. Appl. Math., 25 (2024), e01789
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14 POSITIVITY AND EQUILIBRIUM IN A FRACTIONAL SIR MODEL

We do V = I − I∗ and W = R−R∗ to translate the equilibrium to the origin. Then, by Eqs. (4.7),
(4.8), (4.14) and (4.17) and observing that SI −S∗I∗ = S∗V − I∗(V +W )−V (V +W ), we get[

V
W

]
=

[
f1(t)
f2(t)

]
+
∫ t

0

[
Φ(t, t ′)ω/Nτ 0

F(t − t ′)θ(t, t ′)ω/Nτ 0

]
×

[
(S∗V − I∗(V +W )−V (V +W ))(t ′)

(V +W )(t ′)

]
dt ′,

(4.18)

on what [
f1(t)
f2(t)

]
=

 Φ(t,0)i0 −
∫

∞

t
Φ(t ′)

S∗I∗ω

Nτ
dt ′

F(t)θ(t,0)i0 −
∫

∞

t
F(t ′)θ(t ′,0)

S∗I∗ω

Nτ
dt ′

 . (4.19)

The nonlinear Volterra integral system of Eq. (4.18) can be written in matrix form as:

X(t) = F(t)+
∫ t

0
A(t − t ′)G(X(t ′))dt ′, (4.20)

on what

X =

[
V
W

]
;F =

[
f1

f2

]
;A =

[
Φω/Nτ 0

Fθω/Nτ 0

]
; (4.21)

G(X) =

[
S∗V − I∗(V +W )−V (V +W )

V +W

]
. (4.22)

The characteristic equation of the linearization of Eq. (4.20) is

det
(

Identity−
∫

∞

0
e−λ tA(t)Jdt

)
= 0, (4.23)

where J is the Jacobian of G evaluated at 0.

The stability analysis of the origin uses a result cited in [10]: If the solutions of Eq. (4.20) exist in
[0,∞) and are bounded, F(t) ∈C[0,∞), F(t)→ 0 when t → ∞, A(t) ∈ L1[0,∞), G(X) ∈C1(R2),
G(0) = 0, J is non-singular and Eq. (4.23) does not have roots with non-negative real parts, then
the origin is a locally asymptotically stable equilibrium.

Most of the conditions are straightforward. In particular, F(t) → 0 due to the existence of
the Laplace Transform of the Mittag-Leffler function. We need to prove that there are no
characteristic roots of Eq. (4.23) with a non-negative real part. First, we calculate J, obtaining

J =

[
S∗− I∗−2V −I∗−V

1 1

]
V=W=0

=

[
S∗− I∗ −I∗

1 1

]
. (4.24)

Thus, the characteristic equation is given by

det

([
1 0
0 1

]
−
∫

∞

0

[
e−λ tΦ(t,0)ω(S∗− I∗)/Nτ −e−λ tΦ(t,0)I∗ω/Nτ

e−λ tF(t)e−γtω(S∗− I∗)/Nτ −e−λ tF(t)e−γt I∗ω/Nτ

]
dt

)
= 0. (4.25)

Trends Comput. Appl. Math., 25 (2024), e01789
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We observe that the integrals have the form of a Laplace transform and, in [10], is requested the
hypothesis that the probability of permanence φ is dominated by an exponential decay, in order
to guarantee the existence of the transform. The Mittag-Leffler function is not dominated by
exponential decay, but the Laplace transform converges if Re(λ + γ)> 0, and |λ + γ|> 1/τ [8].

Eq. (4.25) can be written as(
1−

∫
∞

0
e−λ t

Φ(t,0)(S∗− I∗)
ω

Nτ
dt
)(

1+
∫

∞

0
e−λ tF(t)e−γt I∗

ω

Nτ
dt
)

−
(∫

∞

0
e−λ t

Φ(t,0)I∗
ω

Nτ
dt
)(

−
∫

∞

0
e−λ tF(t)e−γt(S∗− I∗)

ω

Nτ
dt
)
= 0. (4.26)

Which resumes to

1−
∫

∞

0
e−λ t

Φ(t,0)(S∗− I∗)
ω

Nτ
dt +

∫
∞

0
e−λ tF(t)e−γt I∗

ω

Nτ
dt = 0. (4.27)

Finally, since Φ(t,0) = θ(t,0)φ(t) = e−γt(1−F(t)), we have

1−
∫

∞

0
e−λ te−γt(S∗− I∗)

ω

Nτ
dt +

∫
∞

0
e−λ tF(t)e−γt(S∗−I∗)

ω

Nτ
dt

+
∫

∞

0
e−λ tF(t)e−γt I∗

ω

Nτ
dt = 0, (4.28)

1−
∫

∞

0
e−λ te−γt(1−F(t))S∗

ω

Nτ
dt +

∫
∞

0
e−λ te−γt I∗

ω

Nτ
dt = 0. (4.29)

The condition ω > (τγ)1−α +(τγ) is equivalent to

ℜ0 =
N
S∗

=
∫

∞

0
Φ(t,0)

ω

τ
dt =

∫
∞

0
e−γt(1−F(t))

ω

τ
dt > 1. (4.30)

Supposing absurdly that Re(λ )≥ 0, then∫
∞

0
e−γt(1−F(t))

ω

τ
dt =

N
S∗

> Re
(∫

∞

0
e−λ te−γt(1−F(t))

ω

τ
dt
)
. (4.31)

Thus,

1 > Re
(∫

∞

0
e−λ te−γt(1−F(t))S∗

ω

Nτ
dt
)
, (4.32)

and, to fulfill Eq. (4.29), it will be necessary to have

Re
(∫

∞

0
e−λ te−γt I∗

ω

Nτ
dt
)
< 0. (4.33)

But, see that, if Re(λ )>−γ , we have∫
∞

0
e−λ te−γt I∗

ω

Nτ
dt =

ωI∗

(λ + γ)Nτ
. (4.34)
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16 POSITIVITY AND EQUILIBRIUM IN A FRACTIONAL SIR MODEL

Since λ = a+bi with a ≥ 0, we have

ωI∗

(λ + γ)Nτ
=

ωI∗

Nτ
· 1
(a+ γ)+bi

· (a+ γ)−bi
(a+ γ)−bi

=
ωI∗

Nτ
· (a+ γ)−bi
(a+ γ)2 +b2 , (4.35)

following that

Re
(

ωI∗

(λ + γ)Nτ

)
=

ωI∗(a+ γ)

Nτ((a+ γ)2 +b2)
> 0, (4.36)

contradiction with (4.33). Therefore, the equilibrium (S∗, I∗,R∗) is locally asymptotically stable.

□

5 DISCUSSION AND CONCLUSION

We discuss the SIR model from [3] with the aim of expanding on previous results and sharing
the findings. This model is of interest to us because it is based on a meaningful construction that
naturally involves derivatives of arbitrary order. We also demonstrate how the same fractional
model can be derived from the theory presented in [15]. This approach helps to clarify the role
of the proposed generalizations in the context of the classical SIR model.

In addition to introducing the model, we establish non-negativity and investigate the behavior of
the compartments S and R, showing monotonicity in the limiting case where γ ≡ 0 is constant.
This aligns with biological interpretations.
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Figure 3: Trajectories ℜ0 < 1.
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Figure 4: Trajectories ℜ0 > 1.

Equilibrium points are analyzed, and we prove global asymptotic stability for the disease-free
equilibrium and local asymptotic stability for the endemic equilibrium, assuming simplifications
such as γ(t)≡ γ (what is reasonable) and β = 1 (subject to further investigation due to the neglect
of time-dependent infectivity). We hypothesize that the region with i0 > 0 is a stable region for
(S∗, I∗,R∗), even for β < 1. Figures 3 and 4 illustrate Theorems 2 and 3, with different initial
conditions and β < 1.
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Furthermore, a recent study by [24] provides a global analysis of the equilibria of an SIS model
related to the model in equations (2.18)-(2.20) with β = 1, with the main difference being the
existence of an entry depending on I in the S compartment. Their geometric approach to global
stability problems may extend the results of Theorem 3 globally, although this extension is not
straightforward. Also, [24] uses an approximation for the fractional derivative of I that needs to
be further explored in the case of the SIR model. Other memory kernels, as those with α ≤ 1< β ,
offer opportunities for generalizing the model to various types of diseases.

Finally, we emphasize that the model in (2.40) uses the tempered fractional Riemann-Liouville
derivative with an exponential tempering function. This is a notable application of Tempered
Fractional Calculus, an extension of classical Fractional Calculus [21]. Additionally, Eq. (2.12)
relates to an α−exponential function, the usefulness of which has been recently discussed [4].
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