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ABSTRACT. The quantification of torques and moments of inertia for horizontal axis hydrokinetic turbine
driveline is important to precisely predict the dynamic behavior of the complete system. Initially, this paper
presents different models used in the literature for describing torques and moments of inertia of turbine
components. A dynamic model of a small hydrokinetic turbine using belt transmission is developed. The
model uses the Blade Element Momentum (BEM) for determining the power coefficient of the turbine
rotor. It considers the inertial effects and dissipative torques of the whole system. The results of the turbine
dynamical behavior are compared with experimental data, showing good agreement. In order to numerically
analyze a more efficient drivetrain, the belt transmission is replaced by a planetary gearbox in the model,
and the new results are also assessed. It was found that with planetary gears, a more compact transmission
can be used, reducing the inertial effects, bringing a better performance to the machine starting, shortening
the transient regime time.

Keywords: hydrokinetic turbine, powertrain dynamics, dissipative torques, moment of inertia, belt
transmission, planetary gear transmission.

1 INTRODUCTION

Hydrokinetic turbines harness the kinetic energy transported by the water stream, instead of the
potential energy as in the case of traditional hydro turbines. The main importance of such a
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technology is its implementation without significant damages to the environment [8, 9]. The in-
stallation of hydrokinetic turbines in regions with great hydrological potential is quite attractive,
especially in urbanized locations where floods caused by dams (in the case of traditional hydro
turbines) would be a serious problem.

Hydrokinetic turbines are not well consolidated commercially as wind turbines. But, the interest
of the scientific and engineering communities on hydrokinetic technologies continue to grow.
In the literature, several works have been done on kinetic turbines performance focusing on
rotor optimization [4, 15, 22]. However, the electrical power produced by a kinetic turbine is
influenced not only by the aero or fluid dynamics of the rotor, but also by the dynamics of the
transmission and generator systems [7, 14]. Different transmission systems can be used, but in
general, for small hydrokinetic turbines, belt transmission and planetary gear systems have been
more frequently used [5, 11, 23]. Even a mixed transmission including both belt and gears has
been used in twin-vertical axis hydrokinetic turbine [19].

For an efficient hydrokinetic turbine design, all dynamic aspects of the elements of the turbine
(rotor, transmission, and generator) must be considered, especially its moments of inertia, driv-
ing and resistive torques. By individually analyzing the torques and moments of inertia of the
turbine elements, it is possible to dynamically assess these elements. Several models of torques
and moment of inertia have been developed in the literature. In Mesquita et al. [13] and Lopes et
al. [11], hydrokinetic turbines are modelled through Blade Element Momentum Theory (BEMT)
coupled with drive system and generator dynamic models. Therefore, the whole model (compris-
ing torques and moment of inertia of the turbine elements) consisted of a nonlinear first order
differential equation, which is solved by an interactive numerical method.

In this context, this current work shows initially several models of inertia and torques available in
the literature, which can be used in the modeling of the turbine components. Hence, the dynamic
turbine approach described in Lopes et al. [11] is presented, but under new operating conditions.
The results of the model are compared with measurements in situ. In order to assess the behavior
of the drive system, numerically, the belt transmission is replaced by a planetary gearbox and the
results are compared.

2 DYNAMICAL MODEL

The horizontal axis hydrokinetic turbine system consists of a turbine rotor with mass moment
of inertia JT connected to a generator (electric load) with mass moment of inertia JL, through a
multiplication system with speed ratio r, and efficiency η , as shown in Figure 1. The shafts and
the gears are infinitely rigid. Such consideration is valid since the vibration modes of the system
are assumed to be in frequency range higher than the operational frequency range. Therefore, the
dynamic equation governing the entire system shown in equation 2.1 is given by [13]:

TT − (TD,total +TL→T ) = Jtotal
dωM

dt
(2.1)

Trends Comput. Appl. Math., 24, N. 2 (2023)
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M. H. C. BENTES ET AL. 231

where TT is the turbine rotor torque, TD,total , is the total dissipative torque of the system and TL→T

is the equivalent load torque. The total or equivalent mass moment of inertia of the system (Jtotal)
is the sum of inertia of the turbine, inertia of the mechanical transmission, and the equivalent
inertia of the generator. ωM is the rotor angular speed of the turbine rotor.

Figure 1: Illustration of the complete system of a horizontal hydrokinetic turbine [13].

The terms of torque and mass moment of inertia in equation 2.1 can be modeled in different
ways. Thus, the following sections show some different models found in the literature for each
term in the equation.

2.1 Turbine rotor torque

The expression of the turbine torque is obtained from the quotient between the mechanical power
PM of the rotor and its angular speed ωM , that is:

TT =
PM

ωM
=

1
2

ρπR2V 3

ωM
CP (2.2)

where PM is the output power of the hydrokinetic turbine, ρ is the water density, R is the radius
of the turbine rotor, and V is the freestream velocity. The power coefficient Cp can be determined
by the classic BEMT [6], written as:

Cp =
8

λ 2

∫
λ

0
a′F(1−a)x3dx (2.3)

where λ is the tip-speed ratio (TSR), x is the local-speed ratio (LSR), a and a′ are axial and
tangential induction factors, respectively, while F is the Prantl tip loss factor.

An empirical equation can also be used to model Cp. For the case of a turbine operating at con-
stant or variable speed, this expression is based on experimental data provided by wind turbine
manufacturers [1]:

Cp = c1

(
c2

λi
− c3β − c4β

c5 − c6

)
e
−c7
λi (2.4)

λi =

(
1

λ + c8β
− c9

β 3 +1

)−1

(2.5)

where β is the pitch angle, and c1 to c9 are the coefficients for approximating the curves obtained
by Slootweg [21] for modern turbines.

Trends Comput. Appl. Math., 24, N. 2 (2023)
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232 TORQUES AND MOMENTS OF INERTIA FOR HORIZONTAL HYDROKINETIC TURBINE

2.2 Dissipative Torque Models

Dissipative torques are all torques resistant to the rotational movement of all elements of the
turbine. For a hydrokinetic turbine, the frictional torques in bearings and the torque due to the
additional mass of the fluid on the blades are considered resistive. However, for wind turbines,
only the frictional torques in the bearings are considered, because the mass air is much smaller
than water, which greatly reduces the drag on the rotor caused by the viscosity of the fluid. The
losses of each transmission system, are accounted into their own efficiencies (η).

A simple model for the dissipative torque in the bearings is the rotating Coulomb friction model
[3], which is independent of the rotation speed and given by equation 2.6:

TD,C = µF1
dm
2

(2.6)

where µ is the friction coefficient, F1 is the resulting load on the bearing, and dm is the primitive
or mean diameter (between the inner and outer diameter) of the bearing. This friction torque can
provide a good first estimate of the friction torque under well-controlled conditions at steady
state regime.

Another simplified method to obtain the dissipative torque is described in the work developed by
Bao & Ye [2], through the equation:

TD,B =C1 +
C2

ωM
+C3ωM (2.7)

where C1, C2 and C3 are constants due to the friction of the mechanical parts imposed on the
rotor.

The dissipative torque of the bearings can also be expressed depending on the type of the bear-
ing. For example, in the case of rolling bearings, Palmgren [16] separated the dissipative torque
into two types: Load-dependent component T1 and load-independent component T0, which is in-
fluenced by the viscous properties of the lubricant and the speed of the bearings. Therefore, the
total dissipative torque for spherical bearings is obtained through the equation below:

TD,P = T0 +T1 (2.8)

where,
T0 = 10−10 f0(nv0)

2
3 dm

3 (2.9)

T1 = 10−3 f1Fβ dm (2.10)

In the equations above f0 is a factor that depends on the type of bearing and the lubrication
method used, n is the speed of rotation, v0 is the kinematic viscosity of the lubricant, f1 is a
factor dependent on the geometry of the bearing and the relative load applied to the bearing and
Fβ is a factor dependent on the magnitude and direction of the applied load.

Also, for rolling bearings, SKF [20] has in its catalog another type of formulation:

TD.SKF = Trr +Tsl +Tseal +Tdrag (2.11)

Trends Comput. Appl. Math., 24, N. 2 (2023)
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where Trr is the rolling friction torque, Tsl is the sliding friction torque, Tseal is the friction torque
on the seals and Tdrag is the frictional torque of the drag losses. Each term can be found in more
detail in the SKF catalog [20].

Vaz et al. [25] used a more elaborate methodology for calculating dissipative torque. Based on
SKF model [20], the Stribeck effect was considered in starting torque calculation, as shown
below:

TD.SKF = TSe−
(

n
nst

)i

+Trr (2.12)

TS|n=0 = 0.5(Tsl −Tseal) (2.13)

where nst is the Stribeck speed: nst = 0.0036; i the Stribeck exponent: i = 1.073 and Trr, the
rolling friction torque.

2.3 Generator Torque Models

The generator torque or equivalent load torque is the load torque with reference to the higher
speed axis, and its expression is given by equation 2.14

TL−T =
1
η

rTL (2.14)

where TL is the generator torque, η is the transmission efficiency and r is the speed ratio, given
by r = ωL/ωM .

The generator torque can be described according to the electrical parameters as shown in Vásquez
et al. [24] for synchronous generator and, in Reddy & Bhagyamma [17] for asynchronous genera-
tor. However, the generator torque equation can be simplified using data from the manufacturers.
Thus, a relationship between synchronous generator torque and its angular speed can be given
by an approximate linear equation as shown in Bao & Ye [2]:

TL = KeωL +K0 (2.15)

where, ωL is the angular speed of the generator, Ke and K0 are coefficients obtained by linear re-
gression adjusted to the experimental data of the generator torque curve provided by the generator
manufacturer.

2.4 Moment of Inertia Models

The total mass moment of inertia of the system (Jtotal) is given by the following expression:

Jtotal = JT + J f + JMT + JL→T (2.16)

where JT is the moment of inertia of the turbine rotor mass, J f the moment of inertia of the
additive mass of the fluid around the blades (for hydrokinetic turbines), JMT is the inertia of the
mechanical transmission and JL→T is the equivalent inertia of the generator. These moments of
inertia are described as follows.

Trends Comput. Appl. Math., 24, N. 2 (2023)
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The mass moment of inertia of the JT turbine rotor corresponds to the mass moments of inertia of
the rotor blades plus the mass moment of inertia of the rotor hub. There are different mathematical
models for expressing the inertia of the rotor blades. In Rosales et al. [18] the inertia of the rotor
blades is given by equation 2.17

JT = NρbAR
[∫

(cr)2dr+
A
12

(∫
c4 cos2

θpdr+A2
∫

c4 sin2
θpdr

)]
(2.17)

where N is the number of blades, ρb is the fluid density, A is the blade surface area, R is the rotor
radius, and c is the length of the chord as a function of r (distance increase along the length of
the blade) and θ is the pitch angle of the blade.

In Mesquita et al. [13] an expression is developed to calculate the mass moment of inertia of a
blade, dividing the blade into finite volumes along its profile, and at each volume, it is determined
the center of mass of the volume, the mass (mi), and the distance between the center of mass to
the center of rotation of the blade (ri). The moment of inertia of the blade root or base can be
approximated as a hollow cylinder. Therefore, the equation that provides the mass moment of
inertia of the blades is given by equation 2.18

Jblade =
N

∑
i=1

miri
2 +mhubrhub

2 (2.18)

Another way to determine the moment of mass inertia of the blades is through software dedi-
cated to drawings and simulations, such as SolidWorks CAD 3D. In this software, it is possible
to obtain the value of the moment of inertia in relation to one of the three Cartesian axes. Experi-
mentally, the blade’s moment of inertia can be obtained by measurement of frequency oscillation
of the blade as a pendulum.

For wind turbines, the additive mass of the air is negligible. Therefore, the additive mass will
be considered only for hydrokinetic turbines. In the literature, there are several models for the
moment of inertia of the additive mass, such as Wilson [26], and Lewis & Auslaender [10]
models, which were developed for marine propellers, but they can be adapted for hydrokinetic
turbine rotors. More recently, Maniaci & Li [12] presented a model for the additive mass being
equal to the mass of a cylinder (of length equal to the length of the blade) whose diameter is
equal to the length of the chord blade.

The expression of the moment of mass inertia of the mechanical transmission can be determined
from the principle that the equivalent kinetic energy of a system is equal to the sum of the ki-
netic energy of each component of the transmission, which is calculated according to its type of
movement (translation, rotation or both). As an example, below is the moment of inertia of a one
stage planetary gears transmission (Figure 2), widely used in wind and hydrokinetic turbines:

JMT = JPG = JC +NP

[
JP

(
RS +RP

RP

)2

+mP(RS +RP)
2

]
+

[
2(RS +RP)

RS

]2

JS (2.19)

Trends Comput. Appl. Math., 24, N. 2 (2023)
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where JC, JP, and JS are the moments of inertia of the carrier, planet gear, and sun gear, re-
spectively. NP is the number of planet gears with radius RP and mass mP. RS is the sun gear
radius.

Figure 2: Illustration of a hydrokinetic turbine with planetary gear.

In the case of belt transmission (Fig. 3), applying the principle of equivalent kinetic energy, the
moment of inertia of this type of transmission is given by:

JMT = JBT = JLP + r2JMP +mBRLH
2 (2.20)

where JBT is the moment of inertia of belt transmission, JLP is the larger pulley (driver pulley),
JMP is the minor pulley (driven pulley), and mB is the belt mass.

Figure 3: Illustration of a hydrokinetic turbine with belt transmission.

Regarding the moment of mass inertia of the generator, initially it is possible to use the simple
model of the moment of mass inertia of a rotating cylinder, whose mass corresponds to the mass
of the rotating parts of the generator. However, a correction must be made in the expression of

Trends Comput. Appl. Math., 24, N. 2 (2023)
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this inertia. In a dynamic mathematical model of the turbine with one degree of freedom, the
low-speed axis is generally adopted as the reference axis, and all moments of inertia of elements
on the high-speed axis must be corrected. Therefore, the moment of inertia of equivalent mass of
the generator can be given by:

JL→T =
R2JL

H
(2.21)

where JL is the inertia of the rotating mass of generator, which can be considered as a rotating
cylinder.

As previously mentioned, there are several models of torques and moment of inertia to compose
the total dynamic formulation of the turbine (equation 2.1). After completing the model, a first
order non-linear ordinary differential equation is obtained, which is solved using the 4th order
Runge-Kutta method. Note that, in equation 2.1, the rotor angular speed is dependent on time
for any wind speed, including its fluctuations. This equation is solved considering its unsteady
behavior, becoming:

dωM

dt
= f (t,ωM) =

TT − (TD,total +TL→T )

Jtotal
(2.22)

K1 = f (t,ωM) (2.23)

K2 = f
(

t +
h
2
,ωM +

h
2

K1

)
(2.24)

K3 = f
(

t +
h
2
,ωM +

h
2

K2

)
(2.25)

K4 = f (t +h,ωM +hK3) (2.26)

ω
i+1
M = ω

i
M +

h
6
(K1 +2K2 +2K3 +K4) (2.27)

where h = t i+1 − t i is the step-size on time. The initial value of the problem is t0 ≈ 0, ω0
M ≈ 25

rpm. The use od this value for ω0
M is due to the singularity in Eq. (2.7). The code is developed in

FORTRAN90, and all the numerical solutions are performed with Intel Core i7-4720HQ com-
puter, with 2.6 GHz processor and 16 GB RAM. Further, once the angular speed ωM is calculated,
all torque expressions dependent on time may be determined.

3 CASE STUDY

The case study refers to the measurement and numerical simulation of a small hydrokinetic
turbine installed on the Arapiranga-Açu river in the city of Acará in the state of Pará, northern
Brazil, located at latitude 01o57′39” South and longitude 48o11′48” West (Figure 4).

The hydrokinetic turbine is composed by a 4-bladed aluminum rotor (protected by an aluminum
housing), belt transmission and a permanent magnetic generator as shown in Figure 4. The 60
cm diameter turbine rotor (illustrated in Figure 5) has four blades with 428/480 GÖ (Goetingen)
profiles (480 on the blade tip and 428 on the base) combined with NACA 0012. The blade
geometry is detailed in Table 1, which shows the dimensions of chord and the twist angle as
a function of the radial position.

Trends Comput. Appl. Math., 24, N. 2 (2023)
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Figure 4: (a) Location of the small turbine in state of Pará, Brazil. (b) Details of the turbine
installed at Arapiranga-Açu river.

Table 1: Rotor blade geometry.

Radial position [m] Chord [m] Twist angle [rad]
0.075 0.100 0.262
0.083 0.105 0.253
0.113 0.126 0.219
0.145 0.146 0.186
0.176 0.167 0.152
0.207 0.188 0.118
0.238 0.208 0.085
0.269 0.229 0.051
0.300 0.250 0.017

Trends Comput. Appl. Math., 24, N. 2 (2023)
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Figure 5: Illustration of 4-bladed rotor with 428/480 GÖ (Goetingen) combined with NACA
0012 profiles.

The transmission system is composed of belt and pulleys with a transmission ratio of 1 : 4. The
permanent magnet generator has the following nominal characteristics: output power of 500 W,
rotation of 900 rpm and output voltage of 12 V. To measure the water velocity, it was used
the Sontek Flow Tracker Adv. This equipment uses the Doppler effect, and is equipped with two
probes which obtain speed data in two reference axes. The rotation of the second shaft (connected
to the generator) a tachometer Minipa, model MDT – 2238A was used.

The dynamical model used in the simulation is the same obtained by Lopes et al. [11] where for
turbine rotor, the power coefficient is modelled by BEMT (equation 2.3). For dissipative torque
from bearings, it is used Palmgren model (equations 2.8 and 2.9). The moment of inertia of
blades, belt transmission and generator, equations 2.18, 2.20 and 2.21 are applied, respectively.
However, for the current study, the analysis is performed for new operating conditions. In this
case the river velocity has average value of 0.77 m/s, which is higher than presented in Lopes et
al. [11]. Hence, the dissipative torque expression for the turbine with belt transmission is:

TD,BELT =2622.899×10−6
ω

0.62 +258.12×10−4 +1162.788×10−10
ω

0.67

+367.762×10−6
ω

(3.1)

In order to assess the behavior of the drive system, numerically, the belt transmission is replaced
by a planetary gearbox (see equation 2.19). The planetary transmission used in this comparison
analysis has the following characteristics: transmission ratio being the same of 1 : 4, length of
0.09 m and diameter of 0.142. The transmission system has single stage with three planet gears
and a sun with diameters of 0.0472 m and masses equal to 6.7749×10−2 kg. The carrier (Con-

Trends Comput. Appl. Math., 24, N. 2 (2023)



i
i

“A3-1683” — 2023/3/22 — 12:54 — page 239 — #11 i
i

i
i

i
i

M. H. C. BENTES ET AL. 239

nection between the rotor shaft and the planetary gears) is 0.0472 m long and mass equal to
4.6264×10−3 kg. In this case, the dissipative torque is given by:

TD,PLANET GEAR =249.806×10−5
ω

0.67 +453.052×10−4 +11.228×10−8
ω

0.5

+367.762×10−5
ω

(3.2)

Next, the results of rotational speed of the turbine with different models of mechanical transmis-
sions are addressed. Further, results for turbine torque and resistive torques are presented as a
function of the speed of rotation and time for both transient and steady-state behavior.

4 RESULTS

Figure 6 shows the rotational speed of the turbine with belt transmission model compared with
measured data (turbine with belt transmission installed on river). In the same graph there are the
results of the rotational speed when the planetary gearbox is used instead of the belt drive in
the dynamical model. We observe that both mechanical transmission, planetary gearbox and belt
drive, are in good agreement.

Figure 6: Results for rotational speed of the turbine for both planetary gear (numerical solution)
and belt transmission (numerical and experimental data).

Note that the steady-state regime is reached more faster when the powertrain works with the
planetary gearbox. This occurs because the gearbox has lower equivalent moment of iner-
tia (JPG = 0.087kg.m2) compared to the belt one (JBT = 1.76kg.m2), as the resistive torques
(TR = TD,total + TL→T ) for both transmissions are quite similar (Figure 7). This implies lower

Trends Comput. Appl. Math., 24, N. 2 (2023)
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Figure 7: Results for resistive torque TR for both planetary gear and belt transmission.

energy spent by the system to reach steady-state behavior when the gearbox is used as the
mechanical transmission.

The resistive torques for the turbine models with either belt transmission or planetary gears are
small, as can be seen in Figure 8. The turbine torque and resistive torques are presented as a
function of the speed of rotation in the transient and in the permanent regimes (where the torques
match). In this way, it is noticed that a more compact transmission, with less resistance due to the
lower moment of inertia brings a better efficiency in the starting of the machine. Figure 9 shows
the same information as before, but with the torques shown as a function of time.

5 CONCLUSIONS

The dynamic behavior of a kinetic turbine, whether hydrokinetic or wind, can be assessed by
means of the response of a non-linear dynamic model with one degree of freedom. In this dy-
namic model of the entire turbine, considering its driveline, there are different terms (mathemat-
ical models) described in the literature for the driving and resistive torques, as well as for the
moments of inertia of the rotating components. In this sense, this paper presented a brief review
of these different mathematical models available for the torque of the turbine, dissipative torque
of the bearings, resistive torque of the load, and moments of inertia of the rotor, fluid, mechanical
transmission, and electric generator. As a case study, the dynamic modeling of a small hydroki-
netic turbine installed in the northern region of Brazil is described, which is modeled by terms

Trends Comput. Appl. Math., 24, N. 2 (2023)
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Figure 8: Results for resistive torque TR for both planetary gear and belt transmission.

Figure 9: Comparison between the turbine torque and the resistive torque in relation to the time.

Trends Comput. Appl. Math., 24, N. 2 (2023)
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mentioned in the previous literature review. The result of the model showed excellent agreement
with experimental data measured in situ.

Then, in order to assess the improvement in the efficiency of the turbine, the mechanical trans-
mission used in the model is replaced by a transmission by planetary gears, which is a very
compact transmission, with better distribution of forces, and has no slippage problems (where
there is efficiency loss). The results of the new model state that the turbine, due to lower moment
of inertia, has a short transient regime, therefore the steady-state regime is reached faster. This
implies lower energy spent by the system to reach steady state. The turbine with the planetary
gears, on the other hand, implies that the generator will be on the same center line as the turbine
rotor, therefore remaining below the waterline. Therefore, the costs of manufacture, assembly,
sealing are not included in this analysis.

As a limitation of the hydrokinetic system modeling by one degree of freedom is the consider-
ation that the low and high-speed axes are considered totally rigid. This premise is valid if the
operating speed range is far from the natural frequencies of the system. Otherwise, the mathe-
matical model would have more than one degree of freedom formed by a system of non-linear
differential equations, and the problem of vibrations due to resonances must be considered.
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[15] A. Muratoglu, R. Tekin & Ömer Faruk Ertuğrul. Hydrodynamic optimization of high-performance
blade sections for stall regulated hydrokinetic turbines using Differential Evolution Algorithm. Ocean
Engineering, 220 (2021), 108389. doi:https://doi.org/10.1016/j.oceaneng.2020.108389. URL https:

//www.sciencedirect.com/science/article/pii/S0029801820312968.

Trends Comput. Appl. Math., 24, N. 2 (2023)



i
i

“A3-1683” — 2023/3/22 — 12:54 — page 244 — #16 i
i

i
i

i
i

244 TORQUES AND MOMENTS OF INERTIA FOR HORIZONTAL HYDROKINETIC TURBINE

[16] A. Palmgren, G. Palmgren, B. Ruley & i. SKF Industries. “Ball and Roller Bearing Engineer-
ing”. SKF Industries, Incorporated (1945). URL https://books.google.com.br/books?id=

sdtSAAAAMAAJ.

[17] G.P.K. Reddy & S.S.D.S. Bhagyamma. “Fixed-Speed and Variable Speed (PMSG) Induction
Generators Based Wind Farms with Statcom Control under Asymmetrical Grid Faults” (2014).

[18] P. Rosales, J. Cerezo, G. Montero & A. Lambert. Comparative Assessment of a Horizontal Small Wind
Turbine with Ball and Magnetic Bearings on the Starting. Chemical Engineering Transactions, 34
(2013), 55–60. doi:10.3303/CET1334010. URL https://www.cetjournal.it/index.php/cet/

article/view/CET1334010.

[19] S. Runge, T. Stoesser, E. Morris & M. White. Technology readiness of a vertical-axis hydro-kinetic
turbine. Journal of Power and Energy Engineering, 6 (2018), 63–85. URL https://doi.org/10.

4236/jpee.2018.68004.

[20] SKF. Rolling Bearing Catalogue (2018). URL www.skf.com.

[21] J. Slootweg. “Wind Power: Modelling and Impact on Power System Dynamics”. Doctoral thesis,
Technical University of Delft, Delft, Netherlands (2003). URL http://resolver.tudelft.nl/

uuid:f1ce3eaa-f57d-4d37-b739-b109599a7d21.

[22] N. Tenguria, N.D. Mittal & S. Ahmed. Evaluation of performance of horizontal axis wind turbine
blades based on optimal rotor theory. Journal of Urban and Environmental Engineering, 5 (2011),
15–23. URL http://www.jstor.org/stable/26203352.

[23] W. Tian, Z. Mao & H. Ding. Design, test and numerical simulation of a low-speed horizon-
tal axis hydrokinetic turbine. International Journal of Naval Architecture and Ocean Engineer-
ing, 10(6) (2018), 782–793. doi:https://doi.org/10.1016/j.ijnaoe.2017.10.006. URL https://www.

sciencedirect.com/science/article/pii/S2092678217301978.

[24] F.A.M. Vasquez, T.F. de Oliveira & A.C.P. Brasil Junior. On the electromechanical behavior of hy-
drokinetic turbines. Energy Conversion and Management, 115 (2016), 60 – 70. doi:https://doi.org/10.
1016/j.enconman.2016.02.039.

[25] J.R. Vaz, D.H. Wood, D. Bhattacharjee & E.F. Lins. Drivetrain resistance and starting perfor-
mance of a small wind turbine. Renewable Energy, 117 (2018), 509–519. doi:https://doi.org/10.
1016/j.renene.2017.10.071. URL https://www.sciencedirect.com/science/article/pii/

S0960148117310339.

[26] W. Wilson. “Practical Solution of Torsional Vibration Problems: With Examples from Marine,
Electrical, Aeronautical, and Automobile Engineering Practice”. v. 4. Chapman & Hall (1956).

Trends Comput. Appl. Math., 24, N. 2 (2023)


