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ABSTRACT. In this work we present a numerical study of surface water waves over variable topographies
for the linear Euler equations based on a conformal mapping and Fourier transform. We show that in the
shallow-water limit the Jacobian of the conformal mapping brings all the topographic effects from the
bottom to the free surface. Implementation of the numerical method is illustrated by a MATLAB program.
The numerical results are validated by comparing them with exact solutions when the bottom topography
is flat, and with theoretical results for an uneven topography.
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1 INTRODUCTION

Over the centuries, the curiosity has led the human being to explore and investigate the ocean
in several perspectives. Nonetheless, due its immensity and complexity the ocean remains as
a strange place for us – what make it an enjoyable subject of studying. Among the topics of
research in ocean sciences, we can cite the water waves propagation. A better understanding of
the dynamic of water waves is crucial, for instance, to protect coastal communities from ocean
hazards such as tsunamis.

Historically, Isaac Newton (1687) was the pioneer in the study of water waves. However, his
results lack of mathematical rigorous. Approximately one century later, Leonhard Euler (1757)
deduced the equations that model the dynamic of water waves which bears his name [7]. The
Euler equations is one of the main models used to investigate the dynamic of surface gravity
waves. For instance, these equations describe the motion of a flow of water over rocks, ship
wakes, which are waves generated by the passage of a moving loading in the surface of the wa-
ter [2], and waves generated by storms [13]. One of the ways of solving the Euler equations
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626 LONG WATER WAVES OVER TOPOGRAPHIES

broadly used in the literature is to construct a conformal mapping that maps the fluid domain
onto a strip [8]. This approach transforms the free boundary problem given by the Euler equa-
tions into a family of ordinary differential equations which are easier to be solved numerically.
Since then, many works have been done on this topic [4, 5, 8, 9, 10, 12, 16]. It is hard to give a
comprehensive overview of contributions. For the interested reader, we mention a few articles
and references therein for further details. Solitary waves propagating over a flat bottom were
computed numerically by Choi and Camassa [5] and later in the presence of a vertically sheared
current with constant vorticity by Choi [4]. In this scenario, particle trajectories and the pressure
within the bulk of the fluid were computed in Ribeiro-Jr et al [20]. In the presence of an uneven
topography Nachbin [16] constructed a conformal mapping to flatten the bottom topography and
asymptotically obtained a Boussinesq-type equation with variable coefficients. More recently,
particle trajectories for the linear Euler equations were investigated by Flamarion et al. [10] in
the presence of a linear sheared current and a variable topography.

Conformal mapping has also been applied in the study of free boundary problems in small
scales such as the walking of a fluid droplet (silicon) on the surface of a vibrating bath. A prob-
lem which mimics the wave-particle duality present in quantum mechanics [3, 6, 15]. Using the
Schwarz-Christoffel mapping, Nachbin and collaborators [17,18,19] have investigated in details
the role of the free surface wave as a spontaneous mechanism of synchronisation of oscillating
droplets confined in different types of cavities. Their findings have contributed to a better under-
stand of the hydrodynamic pilot-wave analogy with quantum mechanics and other phenomena
as Kuramoto-like synchronisation.

In this work, we study numerically the water wave interactions with a variable topography using
the linear Euler equations. The topography models variations and geometric irregularities on the
seabed, such variations can be caused by submarine relief, submerged equipments and effects
of human activities. The problem is formulated through the use of a conformal mapping which
flattens the fluid domain onto a strip. We show that when the average depth of the channel is
small compared to the wavelength of the surface wave, the Jacobian of the conformal mapping
carries all the underwater obstacle information, then the linear Euler equations can be written in
a much simpler system of coordinates. The numerical method is implemented on MATLAB and
its validation is performed by comparing numerical solutions with exact ones when the bottom
is flat, and with theoretical results for uneven topographies. A similar result on the topic of this
article is presented by Artiles and Nachbin [1]. Although we study the same set of equations of
these authors there are remarkable differences between the two studies. First, the mathematical
formulation considered by Artiles and Nachbin [1] depends on the computation of an explicit
formula of the Dirichlet-to-Neumann operator, whereas in this work this requirement is removed.
Second, Artiles and Nachbin [1] considered an implicit scheme to solve the initial value problem,
while here we use the classical Runge-Kutta forth-order method. In addition, our formulation
allows to conclude easily that in the shallow water limit the mapping Jacobian’s along the free
surface carries the topographic effects.

Trends Comput. Appl. Math., 23, N. 4 (2022)



i
i

“A2-1641-9686” — 2022/10/11 — 18:09 — page 627 — #3 i
i

i
i

i
i

M. V. FLAMARION and R. RIBEIRO-JR 627

The study and the numerical code (see Appendix A) presented in this article can be simply
extended to investigate other problems in linear water waves. For instance: (i) in the attempt
of capture waves that remain stationary over topographic obstacles, which have been known as
trapped waves; (ii) to computed the velocity field beneath the free surface and consequently the
path of the fluid particles; (iii) to analyse the pattern of waves generated by the passage of a
moving disturbance.

This article is organized as follows. In section 1 we present the mathematical formulation of the
Euler equations. In section 2 we describe the conformal mapping technique and rewrite the Euler
equations in the canonical domain, which is a uniform strip, and present a numerical method to
solve them. In section 3 we present the numerical results and the conclusion in section 4.

2 MATHEMATICAL FORMULATION

We consider a two-dimensional irrotational flow of an inviscid and incompressible fluid with
constant density (ρ) in a finite depth channel in the presence of a variable topography (h(x)). On
the top of the channel we have a free surface wave ζ (x, t), which is under the action of gravity
(g). The governing Euler equations written in terms of the free surface (ζ (x, t)) and the potential
velocity (φ̃(x,y, t)) are [22]

φ̃xx + φ̃yy = 0 for h0h(x)< y < ζ (x, t),

φ̃y = φ̃xhx at y = h0h(x),

ζt + φ̃xζx − φ̃y = 0 at y = ζ (x, t),

φ̃t +
1
2

(
φ̃

2
x + φ̃

2
y

)
+gζ = 0 at y = ζ (x, t).

To deal mathematically with this problem, it is convenient to consider dimensionless variables.
Using the typical wavelength λ as the horizontal length, h0 for the vertical length, a for the wave
amplitude, agλ/

√
gh0 as the velocity potential scale, λ/

√
gh0 as the time scale as done in [22],

we obtain the following dimensionless equations

µ
2
φ̃xx + φ̃yy = 0 for h(x)< y < εζ (x, t),

φ̃y = µ
2
φ̃xhx at y = h(x),

ζt + εφ̃xζx −
1

µ2 φ̃y = 0 at y = εζ (x, t),

φ̃t +
ε

2

(
φ̃

2
x +

1
µ2 φ̃

2
y

)
+ζ = 0 at y = εζ (x, t),

Trends Comput. Appl. Math., 23, N. 4 (2022)
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628 LONG WATER WAVES OVER TOPOGRAPHIES

where ε = a/h0 is the nonlinearity parameter, and µ = h0/λ is the shallow-water/long-wave
parameter. For computational purposes, it is convenient to consider the new scaling y → µy. In
this new scaling, the potential velocity is a harmonic function, thus the Euler equations become

φ̃xx + φ̃yy = 0 for µh(x)< y < εµζ (x, t),

φ̃y = µφ̃xhx at y = µh(x),

ζt + εφ̃xζx −
1
µ

φ̃y = 0 at y = εµζ (x, t),

φ̃t +
ε

2

(
φ̃

2
x +

1
µ

φ̃
2
y

)
+ζ = 0 at y = εµζ (x, t),

(2.1)

We are interested in investigating solutions of (2.1) in the linear regime (ε = 0) and weakly
dispersive regime (µ ≈ 0). Under these assumptions we have the linear system of equations

φ̃xx + φ̃yy = 0 for µh(x)< y < 0,

φ̃y = µφ̃xhx at y = µh(x),

ζt −
1
µ

φ̃y = 0 at y = 0,

φ̃t +ζ = 0 at y = 0.

(2.2)

When the bottom is flat, the phase speed of the linear waves are given by [22]

c(k) =

√
tanh(µk)

µk
. (2.3)

We recall that this is for example the speed of the crest of the wave as it propagates. Notice that
in the limit µ → 0, all linear waves travel with the same speed c = 1.

In the following section, we present a numerical method to solve (2.2).

3 CONFORMAL MAPPING AND NUMERICAL METHODS

We recall that one of the main features of conformal mappings is that the Laplace equation is
conformally invariant. Therefore, to solve (2.2) we can apply a conformal mapping and solve it
in a simpler domain. To this end, we construct a conformal mapping

z(ξ ,η) = x(ξ ,η)+ iy(ξ ,η),

which flattens the bottom topography and maps a strip of width D onto the fluid domain, where
D is defined a posteriori. The conformal mapping satisfies the boundary conditions

y(ξ ,0) = 0 and y(ξ ,−D) = µH(ξ ), (3.1)

where H(ξ ) = h(x(ξ ,−D)).

Trends Comput. Appl. Math., 23, N. 4 (2022)
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Using the fact that y is a harmonic function and the boundary conditions (3.1) we obtain

y(ξ ,η) = F−1
k j ̸=0

[
−µ coth(k jD)sinh(k jη)Ĥ

cosh(k jD)

]
− µĤ(0)

D
η ,

where Fourier modes are given by

Fk j [g(ξ )] = ĝ(k j) =
1

2L

∫ L

−L
g(ξ )e−ik jξ dξ ,

F−1
k j

[ĝ(k j)](ξ ) = g(ξ ) =
∞

∑
j=−∞

ĝ(k j)eik jξ ,

and k j = (π/L) j, j ∈ Z. The Cauchy-Riemann equation xξ = yη yields

x(ξ ,η) = F−1
k j ̸=0

[
iµ coth(k jD)cosh(k jη)Ĥ

cosh(k jD)

]
− µĤ(0)

D
ξ .

More details of this conformal mapping can be found in [11].

We choose the vertical strip to be D = µ . The motivation for this choice of D lies on the fact that
at η = 0 and in the limit µ → 0 we formally have

lim
µ→0

xξ (ξ ,0) = lim
µ→0

F−1
k j ̸=0

[
−µk coth(k jµ)Ĥ

cosh(k jµ)

]
− Ĥ(0)

=−F−1
k j ̸=0

[
Ĥ(k j)

]
− Ĥ(0)

=−F−1
[

Ĥ(k j)

]
=−H(ξ ).

(3.2)

The mapping’s Jacobian is given by

J(ξ ,η) = x2
ξ
(ξ ,η)+ y2

ξ
(ξ ,η),

when evaluated along the free surface is denoted as

J(ξ ,0) = x2
ξ
(ξ ,0) = M2(ξ ).

Hence, in the shallow-water (µ ≈ 0) limit we obtain from equation (3.2)

M(ξ ) = xξ (ξ ,0) =−H(ξ ).

Now, our goal is to reduce the system (2.2) into a free surface problem with no boundary con-
ditions in the canonical domain. In order to do that, let φ(ξ ,η , t) = φ̄(x(ξ ,η),y(ξ ,η), t) be the

Trends Comput. Appl. Math., 23, N. 4 (2022)
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630 LONG WATER WAVES OVER TOPOGRAPHIES

potential velocity in the canonical domain. Notice that the chain rule and the Cauchy-Riemann
equations (xξ = yη and xη =−yξ ) yields

φη =−φ̃xyξ + φ̃yxξ . (3.3)

Using the Neumann condition (2.2)2 and the boundary conditions (3.1) at η = −D in (3.3) we
obtain

φη =−φ̃xyξ + φ̃yxξ =−µφ̃xHξ (ξ )+µφ̃xhxxξ = 0 (3.4)

Since φ is a harmonic function and satisfies (3.4), we have the Neumann problem for φ in a strip

φξ ξ +φηη = 0 for −µ < η < 0,

φη = 0 at η =−µ.
(3.5)

The solution of this problem can be written in terms of Fourier modes and yields

φη(ξ ,0, t) = F−1
[

k j tanh(k jµ)φ̂(k j,0, t)

]
. (3.6)

On the other hand, at η = 0 from (3.3) we have

φη = M(ξ )φ̃y.

Substituing in (2.2) we obtain the following set of equation at η = 0

φt +ζ = 0,

ζt −
1

µM(ξ )
φη = 0.

(3.7)

Notice that in the shallow-water limit tanh(k jµ)≈ k jµ and from (3.6) we have

φη(ξ ,0, t) =−µφξ ξ (ξ ,0, t).

Consequently, from (3.7)1 we obtain that the dynamic of the free surface wave is governed by
the classical second order wave equation

ζtt −
1

M(ξ )
ζξ ξ = 0,

which implies that the right-going wave solution travels with speed

c(ξ ) = |M(ξ )|−1/2 (3.8)

We solve (3.6) and (3.7) in a computational domain [−L,L], with a uniform grid with N points
and step ∆ξ = 2L/N. The spatial derivatives are computed using the Fast Fourier Transform
(FFT) [21]. In addition, the time advance of the system (3.7) is computed through the Runge-
Kutta fourth order method (RK4) with time step ∆t. The numerical method is implemented in
MATLAB and the codes can be found in the Appendix A.

Trends Comput. Appl. Math., 23, N. 4 (2022)
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4 NUMERICAL RESULTS

In this section we consider different types of topographies and analyse the interaction of a right-
going pulse with the topography. To this end, we set the initial wave to be

ζ (ξ ,0) = exp
(
− (ξ −ξ0)

2/σ

)
,

where σ is the effective width of the wave and ξ0 is its initial location. The initial potential
velocity is taken as

φξ (ξ ,0,0) = F−1
[−ik

c(k)
ζ̂ (k,0)

]
,

where c(k) is given by (2.3). This choice of initial data guarantees that the solution travels to the
right when the bottom is flat.

4.1 Flat bottom

When the bottom is flat, exact solutions of (3.7) can be written in terms of Fourier modes [22] as

ζE(ξ , t) = F−1
[
ζ̂ (k,0)exp

(
− ic(k)

k
t
)]

. (4.1)

So, in order to valid our numerical method we compare numerical solutions of (3.7) with formula
(4.1). It is worth noting that dispersive waves travel with speed less than c = 1. Figure 1 displays
the comparison between the numerical and exact solutions of (3.7) for different values of µ .
Numerically, we see that the dispersion term not only changes the wave speed, but also affects
the amplitude of the wave front attenuating it. In addition, when the parameter µ → 0, we see a
the Gaussian pulse traveling maintaining its form, no dispersive effects are observed. The relative
error

Error =
max(ξ ,t)∈[−L,L]×[0,100] |ζ (ξ , t)−ζE(ξ , t)|

max(ξ ,t)∈[−L,L]×[0,100] |ζE(ξ , t)|

in all these simulation is at least order O(10−7).

4.2 Uneven topographies

Bragg Resonance

The Bragg Resonance describes the interaction between a wave and a periodic series of underwa-
ter obstacles [14]. This phenomenon is featured by having a reflected wave with wavelength twice
as large as the wavelength of the sequence of obstacles underwater. It occurs when variations on
the topography are comparable with the free surface wavelength.

In order to verify that the model (3.7) is capable of capturing this phenomenon we consider the
bottom topography as

H(ξ ) =

−1+0.5sin
( 2π

λb
(ξ +15)

)
, for ξ >−15,

−1, for ξ ≤−15,

Trends Comput. Appl. Math., 23, N. 4 (2022)
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Figure 1: Comparison between the numerical solutions (solid line) and the exact solutions (dotted
line) at t = 100 for different values of µ . From top to bottom, µ = 1,0.1,0.01. Parameters:
N = 213, ∆ξ = 0.05, ∆t = 0.01, σ = 1 and ξ0 =−20.

where λb is the wavelength of each obstacle underwater. Figure 2 depicts the wave profile of
a Gaussian pulse with wavelength λ ≈ 6 after interacting with the obstacle underwater. Each
obstacle has wavelength λb = 2, and the wavelength of a typical reflected waves is roughly λR ≈
4. When setting λb = 1, Figure 3 displays only reflected waves which has wavelength about
λR ≈ 2. These results confirm the ones predicted by the theory. When the wavelength of the initial
wave and the obstacle are not comparable, the Bragg Resonance does not occur. To illustrate
this, let λb = 0.5, in this case we observe that only a wave of small amplitude is reflected and
its wavelength is around λR ≈ 4 (see Figure 4). The Gaussian pulse passes over the obstacle and
barely feels it.

Waves propagating over a heterogenous medium

When a wave travels with constant speed c1 and c2 in two different media, the coefficients of
transmission and reflection of these waves are respectively [14]

T =
2c2

c1 + c2
and R =

c2 − c1

c1 + c2
.

Trends Comput. Appl. Math., 23, N. 4 (2022)



i
i

“A2-1641-9686” — 2022/10/11 — 18:09 — page 633 — #9 i
i

i
i

i
i

M. V. FLAMARION and R. RIBEIRO-JR 633

-30 -25 -20 -15 -10 -5 0

-1

0

1

Figure 2: The Gaussian pulse after interacting with the topography at t = 15. Parameters: N = 213,
∆ξ = 0.01, ∆t = 0.001, µ = 0.01, σ = 1, ξ0 =−20 and λb = 2.
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Figure 3: The Gaussian pulse after interacting with the topography at t = 15. Parameters: N = 213,
∆ξ = 0.01, ∆t = 0.001, µ = 0.01, σ = 1, ξ0 =−20 and λb = 1.
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Figure 4: The Gaussian pulse after interacting with the topography at t = 15. Parameters: N = 213,
∆ξ = 0.01, ∆t = 0.001, µ = 0.01, σ = 1, ξ0 =−20 and λb = 0.5.

In order to verify that our numerical method captures this phenomenon, we consider the bottom
topography

H(ξ ) =

{
−1, for ξ <−15,

−1.5, for ξ ≥−15,

where the shallower region is the medium 1 and the deeper region is the medium 2. Once we
fix the depth of the channel in the shallow-water limit the speeds c1 and c2 can be obtained by
the expression (3.8). In this configuration we have c1 = 1.000000 and c2 = 0.816496. Thus, the
coefficients of transmission and reflection are T = 0.898979 and R =−0.053197 respectively. In

Trends Comput. Appl. Math., 23, N. 4 (2022)
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order to verify that the numerical method can compute these coefficients correctly, it is enough
to compute the numerical speeds of the transmitted and reflected wave. To this end, we compute
solutions ζ (ξ ,20) and ζ (ξ ,40) as depicted in Figure 5, and calculate the mean speed of the
transmitted and reflected wave using the ξ−position of their local minima and maxima. The
numerical speeds of the transmitted and reflected wave are respectively

cN
1 =

−29.009999+49.009999
20

= 1.00000, cN
2 =

12.759999+3.569999
20

= 0.816499.

Therefore, the method captures the coefficients of transmission and reflexion with great accuracy.

-50 -40 -30 -20 -10 0 10 20

-1.5

-1

-0.5

0

0.5

1

Figure 5: The Gaussian pulse after moving from a medium to another at t = 20 (dotted line)
and at t = 40 (solid line). Parameters: N = 214, ∆ξ = 0.01, ∆t = 0.001, µ = 0.01, σ = 1 and
ξ0 =−20.

5 CONCLUSIONS

In this article, we have presented a numerical method to study linear water waves over an uneven
topography using a conformal mapping. We showed that in the shallow-water limit, the Jacobian
of the conformal mapping carries all the topography information. This allowed us to approxi-
mate the topography by the Jacobian of the conformal mapping in a manner. Consequently, the
problem was reformulated in a much simpler system of equations where numerical computations
were performed. The results were validated by comparing numerical solutions with exact ones
when available and when not, with theoretical results.
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A NUMERICAL CODE

In this appendix we present the MATLAB program used to generate Figure 3. The other figures presented
in this article can also be reproduced by this code.

clear all % Clear the MATLAB memory

% Spatial grid domain

dxi = 0.01;

Nx = 2^13;

L = Nx*dxi;

xi = -L/2: dxi:L/2-dxi;

% Frequency grid domain (Fourier)

dk = 2*pi/L;

k = [0:Nx/2-1 0 -Nx/2+1: -1]*dk;

% Time grid

dt = 0.001;

Tf = 15;

Ns = floor(Tf+1);

Nt=1/dt;

t = 0:1:Tf; % The units of time saved

% Parameters

mu = 0.01; % shallow -water parameter

w = k.*sqrt(tanh(mu*k)./(mu*k)); % dispersion relation

w(1) = 0; w(Nx /2+1) = 0;

% Initial datas

% They are chosen to obtain a right -going wave solution

y = zeros(Ns ,Nx); % The vector wave solution

sigma = 1;

xi0 = -20; % initial position of the wave

y(1,:) = 1*exp(-((xi -xi0).^2)/sigma);

Y = fft(y(1,:)); % FFT of y(1,:)

Phi0 = Y./(1i*w);

Phi0 (1) = 0;

Phi0(Nx /2+1) = 0;

Phi = Phi0; % Redefine the FFT of the velocity potential

% Exact solution for the flat bottom problem

% Z = zeros(Ns ,Nx);
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% for n = 1:1:Ns

% Z(n,:) = real(ifft(Y.*exp(-1i*w.*t(n))));

% end

% The topography is defined as H = - M

% M = 1;

% M = 1 +0.5*(xi >= -15);

M = 1 + 0.5* sin(1*pi*(xi+15)).*(xi >-15);

% M = 1 + 0.5* sin(2*pi*(xi+15)).*(xi >-15);

% M = 1 + 0.5* sin(4*pi*(xi+15)).*(xi >-15);

% Computing the numerical solution through the RK4 method

n = 1;

for tt = 1:1:Tf

for j = 1:Nt

[K1 ,B1] = RK4(Y,Phi ,k,mu ,M);

[K2 ,B2] = RK4(Y+0.5*dt*K1 ,Phi +0.5*dt*B1 ,k,mu ,M);

[K3 ,B3] = RK4(Y+0.5*dt*K2 ,Phi +0.5*dt*B2 ,k,mu ,M);

[K4 ,B4] = RK4(Y+dt*K3 ,Phi+dt*B3 ,k,mu ,M);

Y = Y + (dt/6)*(K1 + 2*K2 + 2*K3 + K4);

Phi = Phi + (dt/6)*(B1 + 2*B2 + 2*B3 + B4);

end;

y(n+1,:) = ifft(Y);

n = n+1

end

% Plotting the wave solution at time t = t(Ns)

plot(xi,y(Ns ,:),’black ’, ’LineWidth ’ ,0.5);

hold on

plot(xi,-M,’black ’, ’LineWidth ’ ,1);

xlim ([-30 0])

ylim ([ -1.5 1.5])

% The function to compute the RK4

function [K,B] = RK4(Y,Phi ,k,mu,M)

K = fft(ifft(k.*tanh(mu*k).*Phi/mu)./M);

B = -Y;

end
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