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Analysis of Error in the Solution of the 2-D
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Abstract. This work presents a numerical solution of the two-dimensional diffusion
equation in comparison with the analytical solution. The norms L2 and L∞ of the
error are evaluated for two variants of the finite element method: the Galerkin
Finite Element Method (GFEM) and the Least-Squares Finite Element Method
(LSFEM). Two applications are presented and discussed.
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1. Introduction

In many works the GFEM was applied to diffusion dominant problems yielding
good results. In [4], GFEM was applied to solve nonlinear electro-hydrodynamic
problems with the diffusive term stronger than the convective term.

In [5], a study of the computational efficiency of two numerical methods based on
the Finite Difference/Galerkin Technique: Reduced Galerkin and Pseudo-Spectral
was done for the steady state convection problem of Rayleigh-Benard. The au-
thor, after presenting the formulation of both methods, shows a numerical test that
demonstrates graphically that the Pseudo-Spectral Method use a larger number of
iterations than the Reduced Galerkin Method for the convergence of the solution.

In this work it is intended to compare results through the numerical simulation
of diffusion problems by the GFEM with the LSFEM. One of the main objectives is
the evaluation of the norms L2 and L∞ for both GFEM and LSFEM and see what
method may be more efficient considering the refine of the meshes of triangles and
quadrilateral with linear or quadratic finite elements.

2. Model Equation

The partial differential equation that models the two dimensional diffusive phe-
nomenon is a particular case of the field problem equation and it is defined in a
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domain Ω ⊂ ℜ2, where Ω is a limited and closed. In the case of heat transfer the
field of interest is the temperature field and the governing equation is of the form:

∂
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+ f = 0 (2.1)

where k is a positive constant; u = u(x, y) is the variable , and f = f(x, y) is a
source term, with x, y ∈ ℜ. The boundary conditions are of first and second kinds.

3. Galerkin Finite Element Method

For the application of this approach, it is necessary to define a variational formu-
lation of the general problem described by the Equation (2.1). The variational
formulation consists of finding ue ∈ V e (where V e ∈ C2 (Ω)) such that
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ve
i dx = 0 (3.1)

∀ve
i ∈ V e, i = 1, 2, ..., Nnodes. ve

i are the weight functions resultant of the Weighted
Residual Method definition.

For the spatial discretization, the following interpolation is used for the variable
u inside a finite element,

u ∼= ue =

Nnodes
∑

j=1

Ni(x, y)ue
i (3.2)

where Nnodes is the number of nodes inside each finite element. After substitution
of Equation (3.2) in the Equation (3.1) and integration by parts as described in [3],
with ve

i = Ni, i = 1, 2, ..., Nnodes, one:

[K]{ue} = {F} (3.3)

In a local coordinates system (ξ, η) in the elements he coefficients of the matrix [K]
and the vector F are:

Kij =

∫

Ω̄e

[
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k

det(J)2
Φ3Φ4

]

det(J)dΩ̄ (3.4)
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fNidet(J)dΩ̄ + (Boundary Term), (3.5)

where,
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∂Nj
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, (3.9)

with i, j = 1, ..., Nnodes.
Further details of this formulation can be found in [8], chapter 8.

4. Least-Square Finite Element Method

Initially for the application of the LSFEM for two dimensional problems two auxil-
iary variables are defined generating a system of three partial differential equations
with three unknowns, as follows,

−
∂qx

∂x
−

∂qy

∂y
+ f = 0 qx + k

∂u

∂x
= 0 qy + k

∂u

∂y
= 0. (4.1)

This artifice decreases the order of the problem and, consequently, the order of the
involved weight and interpolations functions, [10]. Now, we done the interpolation
in each element to the ue, qe

x e qe
y functions, in the following way:

u ∼= ue =

Nnodes
∑

i=1

Niu
e
i (4.2)

qx
∼= qe

x =

Nnodes
∑

i=1

Niq
e
xi (4.3)

qy
∼= qe

y =

Nnodes
∑

i=1

Niq
e
yi (4.4)

After the definition of the spatial approximations, the following residuals can be
defined to Equations (4.1), [6]:

R1(x, y) = −
∂qx

∂x
−

∂qy

∂y
+ f (4.5)

R2(x, y) = qx + k
∂u

∂x
(4.6)

R3(x, y) = qy + k
∂u

∂y
(4.7)

In this way, the residuals are functions of the nodal variables ue
i , qe

xi and qe
yi .

The LSFEM consists in the definition and minimization of the following quadratic
functional [2],
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I(R1, R2, R3) =

∫
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R2
1(x, y)dΩ +

∫

Ωe
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∫

Ωe

R2
3(x, y)dΩ (4.8)

for all u ∈ V = {u ∈ H1(Ω)}, where H1 is the Hilbert space of order one.
The necessary condition for minimization of the functional in the Equation (4.8)

is that its first variation be null. Then, we obtain

∫

Ωe
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Where the first variations of the residuals are
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The substitution of the equations (4.2-4.4) and (4.10-4.12) in Equation (4.9),
yields in a local coordinates system (ξ, η), where −1 ≤ ξ, η ≤ 1 [7], to the following
matrix system of equations:
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(4.13)

where the coefficients of the matrices are defined as

Aij =

∫

Ω̄e

{

k2
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det(J)2
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F1i = 0, F2i =

∫

Ω̄e

{Φ1f} dΩ̄, F3i =

∫

Ω̄e

{Φ3f} dΩ̄ (4.20)

with i, j = 1, ..., Nnodes and Φ1, Φ2, Φ3 and Φ4 defined in Equations (3.6-3.9).
Further details of this formulation can be found in [8].

5. Norms L2 and L∞

In this work will be evaluated the norms L2 and L∞ of the error in the numer-
ical solutions by the GFEM and LSFEM compared with the analytical solution.
Consider u as being the numerical solution and ua the analytical solution of the

Equation (2.1), the norms can be defined as: L2Norm =

√

∑Nnodes

i=1 |u(i) − ua(i)|

and L∞Norm = max|u(i) − ua(i)|, i = 1, ..., Nnodes.

6. Numerical Applications

The integrations are done numerically by the Gauss-Legendre Quadrature. The
Gauss-Legendre Quadrature requests that the integrals be evaluated on the interval
[−1, 1] × [−1, 1], i. e., it requests a transformation of the problem of the global
coordinates x and y to a local coordinates ξ and η, as already mentioned in the
item (3.) and (4.). For the solution of the matrix system the Frontal Method, [9]
pp 120-153, cap. 6 has been applied and for the mesh generation the Ansys (1994)
was used.

In the following sections two applications, in which the main objective is to
evaluate the norms L2 and L∞ of the error of the numerical solutions against the
analytical solution will be presented. The analytical solutions presented can be
found in [1].

6.1. First Application: Pure Diffusion with boundary condi-

tions of the first kind

In this application a purely steady state diffusive case with all the boundary con-
ditions of the first kind, as shown in Figure 1, has been analyzed. The governing

Equation (2.1) reduces to ∂2u(x,y)
∂x2 + ∂2u(x,y)

∂y2 = 0 The analytical solution to this case
is of the form:

u(x, y) =
4

π

∞
∑

n=0

sinh[(2n + 1)π(1 − x)]

sin[(2n + 1)π]

sin[(2n + 1)πy]

2n + 1

so, the first derivatives of the variable u is

∂u(x, y)

∂x
= −4

∞
∑

n=0

cosh[(2n + 1)π(1 − x)]

sin[(2n + 1)π]
sin[(2n + 1)πy]
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Figure 1: Cartesian Geometry with boundary conditions of the first kind.

∂u(x, y)

∂y
= 4

∞
∑

n=0

sinh[(2n + 1)π(1 − x)]

sin[(2n + 1)π]
cos[(2n + 1)πy]

In this work meshes of linear and quadratic quadrilateral and triangular elements
have been used. The Figure 2 illustrates a mesh of 1600 quadrilateral elements of
size (h = 2, 5×10−2). The size h = ∆x×∆y of the element was varied in the range
of 10−1 to 2, 5×10−2. The quadratic quadrilateral element used was the serendipity
element of eight nodes and the results from these meshes were better than the results
from linear four nodes elements, as expected. In the present analysis of the norms

Figure 2: Mesh with 1600 quadrilateral elements.

L2 and L∞ the numerical solutions by the GFEM and LSFEM to u, ∂u/∂x and
∂u/∂y solutions have been computed and are presented in the following figures.

Figure 3(a) illustrates the norm L2 from the solution of u. It can be seen that
with the eight noded element both to the GFEM and the LSFEM produced similar
results, while with the linear element the GFEM presented better results than the
LSFEM.
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Figure 3: (a) Norm L2 of error in numerical solution u for meshes with quadrilateral
elements with four and eight nodes. (b) Norm L∞ of error in numerical solution u for
meshes with quadrilateral elements with four and eight nodes.

Figure 3(b) shows the norm L∞ from the solution of u. It can be seen that in
this case, the eight noded element both to the GFEM and LSFEM produced similar
results, better than the similar results from the linear elements.

0,10 0,08 0,06 0,04 0,02
2

4

6

8

10

12

14

16

18

20

22

24

26

L 2 N
or

m

h

 Galerkin (4 nodes)
 LSFEM (4 nodes)
 Galerkin (8 nodes)
 LSFEM (8 nodes)

(a)

0,02 0,04 0,06 0,08 0,10
1

2

3

4

5

6

7

8

9

10

11

12

13

L oo
 N

or
m

h

 Galerkin (4 nodes)
 LSFEM (4 nodes)
 Galerkin (8 nodes)
 LSFEM (8 nodes)

(b)

Figure 4: (a) Norm L2 of error in numerical solution ∂u/∂x for meshes with quadrilateral
elements with four and eight nodes. (b)Norm L∞ of error in numerical solution ∂u/∂x
for meshes with quadrilateral elements with four and eight nodes.

The Figures 4 and 5 show the norms in the comparisons of the solutions of the
first derivatives, ∂u/∂x and ∂u/∂y. In this case a strange behavior occurred: when
the meshes were refined the results became worst, mainly, in the regions of the
corners (x, y) = (0, 0) and (x, y) = (0, 1) where large gradients are present. These
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corners are singular points and maybe it explains the bad results.
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Figure 5: (a) Norm L2 of error in numerical solution ∂u/∂y for meshes with quadrilateral
elements with four and eight nodes. (b)Norm L∞ of error in numerical solution ∂u/∂y
for meshes with quadrilateral elements with four and eight nodes.

As observed in the case of the solution u, quadratic elements yield to better
results than the linear elements, also, in this case of the derivatives.

6.2. Second Application: Pure Diffusion with boundary con-

ditions of first and second kind.

In this case a purely diffusive problem with source term and boundary conditions
of first and second kind has been analyzed. Now at the contours x = 0 and y = 0
the fluxes are specified as shown in Figure 6. In this case another difference is that
the meshes are of linear and quadratic triangular elements of size h varying from
2, 82×10−1 to 3, 54×10−2. Figure 7 illustrates a mesh of 3200 triangular elements.
The norms L2 and L∞ were computed and are presented in Figures 8(a) to 10(a).
The governing equation in this case is:

∂2u(x, y)

∂x2
+

∂2u(x, y)

∂y2
+ 5 = 0

The analytical solution of this application is of the form:

u(x, y) = 5 ×

{

1

2
(1 − x2) − 2

∞
∑

n=0

(−1)n

λ3
n

cosh(λny)

cosh(λn)
cos(λnx)

}

,

so, the first derivatives are evaluated as

∂u(x, y)

∂x
= 5 ×

{

−x + 2

∞
∑

n=0

(−1)n

λ2
n

cosh(λny)

cosh(λn)
sin(λnx)

}

,
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Figure 6: Cartesian Geometry with boundary conditions of first and second type.
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where λn = (2n + 1)π/2 and n = 0, 1, 2, ....

Figure 7: Mesh with 3200 triangular elements.

The norms L2 and L∞ of the error in the numerical solutions from the GFEM
and LSFEM to the variable u and first derivatives ∂u/∂x and ∂u/∂y with meshes
of three and six noded triangular elements are presented in next figures.

In Figures 8 (a) and (b) it can be observed that with the refine of the meshes
better results are obtained. Quadratic six node triangular elements produced better
results than the results from linear triangular elements. Both the GFEM and the
LSFEM presented similar results for the case of quadratic element, while to the case
of linear elements the GFEM presented better results than the LSFEM.

In the case of this application, contrary to the first application, the derivatives
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Figure 8: (a) Norm L2 of error in numerical solution u for meshes with triangular elements
with three and six nodes. (b) Norm L∞ error in numerical solution u for meshes with
triangular elements with three and six nodes.

∂u/∂x and ∂u/∂y were evaluated without any strange behavior. And the solutions
of the derivatives are enhanced with the refine of the meshes.
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Figure 9: (a) Norm L2 of error in numerical solution u for meshes with triangular elements
with three and six nodes. (b) Norm L∞ error in numerical solution ∂u/∂x for meshes
with triangular elements with three and six nodes

From analysis of Figures 9 to 10 it can be noticed that the LSFEM presented the
best results to the norms of the errors in the derivatives when quadratic elements
were used. When linear elements were used the GFEM presented the best results
compared with the LSFEM.
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Figure 10: (a) Norm L2 error in numerical solution ∂u/∂y for meshes with triangular
elements with three and six nodes. (b) Norm L∞ error in numerical solution ∂u/∂y for
meshes with triangular elements with three and six nodes.

7. Conclusion

Initially, it is interesting to mention the fact, positive, of simultaneous computa-
tion of the fluxes in the LSFEM. Because the use of auxiliary variables, the fluxes,
the numbers of degrees of freedom per node increases, consequently, increase the
computational cost. However, this disadvantage is a little alleviated if we consider
that the matrix of the coefficients, although larger, is symmetrical, facilitating the
storage of just approximately half of its elements. Another advantage of the LS-
FEM is that the resulting matrix is also positive defined and, so, spurious solutions
are prevented. This characteristic of the matrix in LSFEM facilitate the usage of
efficient methods of solutions such as preconditioned conjugate gradient method.
When all boundary conditions are of first kind the LSFEM has its efficiency de-
creased, in concerning of heat fluxes calculation, maybe because no boundary con-
dition in this case be specified to the fluxes. However, with the refine of the
meshes better results may be obtained with the increase of the cost computa-
tional. For more gross meshes the GFEM present better results than the LSFEM.
For purely diffusive problems and when there is not need to calculate the fluxes
the best method is the GFEM. When there is the need to calculate the fluxes the
best method is the LSFEM, because the GFEM requires a post processing to the
calculation of the fluxes.
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Resumo. Neste trabalho apresenta-se a solução numérica via Método dos Ele-
mentos Finitos da equação de difusão bidimensional linear sendo comparada com
a solução anaĺıtica. Para tal análise serão utilizadas as normas L2 e L∞ do erro na
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utilização de duas variantes do Método dos Elementos Finitos: Galerkin e Minimos
Quadrados. Duas aplicações são apresentadas e discutidas.

Galerkin, Mı́nimos Quadrados, Equação da Difusão.
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