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ABSTRACT. In this work we analyze the approximation error in Sobolev norms for quasi-interpolation
operators in spline spaces. We establish in a general way the hypotheses on a quasi-interpolant to achieve
the optimal order of approximation. Finally, we propose simple but general constructions of such operators
that satisfy the established hypotheses and illustrate their performance through some numerical tests.
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1 INTRODUCTION

Quasi-interpolation operators represent a practical and efficient method when calculating approx-
imations using spline functions since they present a great simplicity and flexibility in their con-
struction. To define them, B-splines bases are used and the coefficients are chosen locally. That
is, each coefficient depends only on the data found in the support of the corresponding B-spline.
This localization implies that changes in the data or space of splines have a low computational
cost to recalculate the approximation, because the changes are only local.

Quasi-interpolation operators play a fundamental role from several points of view. On the one
hand, they constitute a key tool in the theoretical analysis of the approximation power of spline
spaces. On the other hand, they provide simple recipes for building good approximations of
functions in spline spaces, that are needed in practical algorithms for solving partial differential
equations; for example, for imposing boundary conditions and for keeping important information
after coarsening in time dependent equations.

2 SPLINE SPACES AND B-SPLINE BASES

Let [a,b] ⊂ R and let Z := {ζ1,ζ2, . . . ,ζN} where ζ1 = a, ζN = b and ζ j < ζ j+1, for j =
1,2, . . . ,N − 1. Let p be a polynomial degree. We associate a number m j, called multiplicity,
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10 QUASI-INTERPOLATION IN SPLINE SPACES

to each breakpoint ζ j, such that m1 = mN = p+1 and 1 ≤ m j ≤ p+1, for j = 2, . . . ,N −1. Let
S be the space of piecewise polynomials of degree ≤ p on Z such that they have p−m j con-
tinuous derivatives at the breakpoint ζ j. It is known that S is a vector space of finite dimension
with n := dimS = ∑

N−1
i=1 mi.

Let Ξ := {ξ j}n+p+1
j=1 be the associated (p+1)-open knot vector, i.e.,

Ξ = {ζ1, . . . ,ζ1,︸ ︷︷ ︸
m1 times

ζ2, . . . ,ζ2,︸ ︷︷ ︸
m2 times

. . .ζN , . . . ,ζN︸ ︷︷ ︸
mN times

}.

Let B := {β1,β2, . . . ,βn} be the B-spline basis of degree p associated to the knot vector Ξ, see
e.g., [2, 5]. We remark that B-splines are non-negative, locally supported, and form a convex
partition of unity, namely,

• βi ≥ 0, for i = 1,2, . . . ,n.

• suppβi = [ξi,ξi+p+1], for i = 1,2, . . . ,n.

•
n

∑
i=1

βi(x) = 1, ∀x ∈ [a,b].

In Figure 1 we show some examples of cubic B-splines.

Figure 1: Examples of cubic B-splines of maximum smoothness (top) and with a triple internal
knot (bottom).

Trends Comput. Appl. Math., 24, N. 1 (2023)
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Let I be the mesh defined by I := {[ζ j,ζ j+1] | j = 1, . . . ,N − 1}. Notice that for each I =
[ζ j,ζ j+1] ∈ I there exists a unique k = ∑

j
i=1 m j such that I = [ξk,ξk+1] and ξk ̸= ξk+1. The

union of the supports of the B-splines acting on I identifies the support extension Ĩ, namely
Ĩ := [ξk−p,ξk+p+1].

3 QUASI-INTERPOLATION OPERATORS: STABILITY AND POWER OF APPROX-
IMATION

Let E ⊂ R be a closed interval, r ∈ N0 and 1 ≤ q ≤ ∞. The Sobolev space W r,q(E) is defined by

W r,q(E) :={u : E → R | u,Du, . . . ,Dr−1u are absolutely continuous on E

and Dru ∈ Lq(E)}.

Notice that Cr(E)⊂W r,∞(E)⊂W r,q(E)⊂W r,1(E)⊂Cr−1(E).

A quasi-interpolation operator Q : W r,q([a,b])→ S is defined by

Q f := ∑
β∈B

λβ ( f )β , (3.1)

for some linear functionals λβ : W r,q([a,b])→ R, for β ∈ B.

We consider the following usual assumption which is not too strong.

Assumption 1. There exists a constant CQ > 0 such that

|λβ ( f )| ≤CQ|suppβ |−
1
q ∥ f∥Lq(suppβ ),

for all β ∈ B.

3.1 Local stability and approximation properties in Lq-norms

The proofs in this section follow exactly the same lines in [4, Theorem 16], but we include them
here for the sake of completeness.

In the following result we prove that Assumption 1 guarantees that the quasi-interpolation
operator Q is locally Lq-stable, 1 ≤ q ≤ ∞.

Theorem 3.1 (Local Lq-stability). Let Q be a quasi-interpolation operator given by (3.1) that
satisfies Assumption 1 with constant CQ, for some 1 ≤ q ≤ ∞. Then, for I ∈ I ,

∥Q f∥Lq(I) ≤CQ∥ f∥Lq(Ĩ), ∀ f ∈ Lq(Ĩ). (3.2)

Proof. Let I = [ξk,ξk+1] ∈ I and x ∈ I, then

|Q f (x)|=

∣∣∣∣∣ k

∑
i=k−p

λi( f )βi(x)

∣∣∣∣∣≤ max
k−p≤i≤k

|λi( f )|
k

∑
i=k−p

βi(x)︸ ︷︷ ︸
=1

≤CQ|I|−
1
q ∥ f∥Lq(Ĩ). Finally, taking the

Lq-norm on I we have that (3.2) holds. □

Trends Comput. Appl. Math., 24, N. 1 (2023)
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12 QUASI-INTERPOLATION IN SPLINE SPACES

Let ℓ ∈ N0 and Pℓ be the space of polynomials of degree at most ℓ.

Theorem 3.2 (Local approximation in Lq-norms). Let Q be a quasi-interpolation operator
given by (3.1) that satisfies Assumption 1 with constant CQ, for some 1 ≤ q ≤ ∞. Let 0 ≤ ℓ≤ p.
If Qg = g, for g ∈ Pℓ, then,

∥ f −Q f∥Lq(I) ≤
(1+CQ)

ℓ!
|Ĩ|ℓ+1∥Dℓ+1 f∥Lq(Ĩ), ∀ f ∈W ℓ+1,q(Ĩ), (3.3)

for all I ∈ I .

Proof. Let g ∈ Pℓ. Then, using that Qg = g and the local Lq-stability of Q (Theorem 3.1) we
have that

∥ f −Q f∥Lq(I) ≤ ∥ f −g∥Lq(I)+∥Q(g− f )∥Lq(I) ≤ (1+CQ)∥ f −g∥Lq(Ĩ).

If g is the Taylor polynomial of degree ℓ at ξk−p to f in Ĩ, the Taylor interpolation error [4,
Theorem 15] implies that (3.3) holds. □

Theorem 3.3 (Global approximation in Lq). Let Q be a quasi-interpolation operator given
by (3.1) that satisfies Assumption 1 with constant CQ, for some 1 ≤ q ≤ ∞. Let 0 ≤ ℓ ≤ p. If
Qg = g, for g ∈ Pℓ, then,

∥ f −Q f∥Lq[a,b] ≤C|I |ℓ+1∥Dℓ+1 f∥Lq[a,b], ∀ f ∈W ℓ+1,q([a,b]),

where |I | := max
2≤i≤N

(ζi −ζi−1) and C := (2p+1)ℓ+1+ 1
q (1+CQ)

ℓ! .

Proof. The proof follows from Theorem 3.2 using that |Ĩ| ≤ (2p+1)|I | and the fact that each
knot interval I belongs (at most) to 2p+1 support extensions. □

3.2 Local stability and power of approximation in high order norms

Now we extend the results from the previous section by considering Sobolev seminorms in the
right hand side of the inequalities.

Following the same lines in the proof of [4, Lemma 4] we obtain the next auxiliary result.

Lemma 3.1. Let Q be a quasi-interpolation operator given by (3.1) that satisfies Assumption 1
with constant CQ, for some 1 ≤ q ≤ ∞. Then, for 0 ≤ r ≤ p,

∥Dr(Q f )∥Lq(I) ≤Cp,r(p+1)CQ|I|−r∥ f∥Lq(Ĩ), ∀ f ∈ Lq(Ĩ),

for all I ∈ I , where Cp,r := 2r p!
(p−r)! .

Trends Comput. Appl. Math., 24, N. 1 (2023)
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Proof. Let I = [ξk,ξk+1] ∈ I and x ∈ I, then using the upper bound for the r-th derivative of the
B-splines from [4, Proposition 2] we have that

|Dr(Q f )(x)|=

∣∣∣∣∣ k

∑
i=k−p

λi( f )Dr
βi(x)

∣∣∣∣∣≤ max
k−p≤i≤k

|Dr
βi(x)|

k

∑
i=k−p

|λi( f )|

≤Cp,r|I|−r
k

∑
i=k−p

|λi( f )|.

Finally, using Assumption 1 we conclude the proof. □

Definition 3.1 (Locally quasi-uniform mesh). The mesh I is locally quasi-uniform with
parameter θ > 0 if

θ
−1 ≤

ζ j −ζ j−1

ζ j+1 −ζ j
≤ θ , ∀ j = 2, . . . ,N −1.

Recall that Pℓ denotes the space of polynomials of degree at most ℓ.

Theorem 3.4 (Local stability in high order norms). Let Q be a quasi-interpolation operator
given by (3.1) that satisfies Assumption 1 with constant CQ, for some 1 ≤ q ≤ ∞. Let 0 ≤ ℓ≤ p.
If Qg = g, for g ∈ Pℓ, then, for 0 ≤ r ≤ ℓ,

∥Dr(Q f )∥Lq(I) ≤CS∥Dr f∥Lq(Ĩ), ∀ f ∈W r,q(Ĩ), (3.4)

for all I ∈ I , where the constant CS > 0 depends on CQ, p, r and θ .1

Proof. Let 1 ≤ r ≤ ℓ. Let f ∈W r,q(Ĩ) and let g be the Taylor polynomial of degree r−1 at ξk−p

to f in Ĩ. Since Qg = g, using Lemma 3.1 and the Taylor interpolation error [4, Theorem 15] we
have that

∥Dr(Q f )∥Lq(I) ≤ ∥DrQ( f −g)∥Lq(I) ≤
Cp,r(p+1)CQ

|I|r
∥ f −g∥Lq(Ĩ)

≤
Cp,r(p+1)CQ

(r−1)!
|Ĩ|r

|I|r
∥Dr f∥Lq(Ĩ).

Considering that |Ĩ|
|I| is bounded above by a constant that depends on p and θ , we conclude

that (3.4) holds. □

The next result generalizes [4, Proposition 6] for general quasi-interpolation operators with
essentially the same proof.

Theorem 3.5 (Local approximation in high order norms). Let Q be a quasi-interpolation
operator given by (3.1) that satisfies Assumption 1 with constant CQ, for some 1 ≤ q ≤ ∞. Let
0 ≤ ℓ≤ p. If Qg = g, for g ∈ Pℓ, then, for 0 ≤ r ≤ ℓ,

1Notice that (3.4) holds with CS =CQ when r = 0, due to Theorem 3.1.

Trends Comput. Appl. Math., 24, N. 1 (2023)
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14 QUASI-INTERPOLATION IN SPLINE SPACES

∥Dr( f −Q f )∥Lq(I) ≤
(1+CS)

(ℓ− r)!
|Ĩ|ℓ+1−r∥Dℓ+1 f∥Lq(Ĩ), ∀ f ∈W ℓ+1,q(Ĩ), (3.5)

for all I ∈ I .

Proof. Let g ∈ Pℓ. Then, using that Qg = g and the local stability of Q given in Theorem 3.4
we have that

∥Dr( f −Q f )∥Lq(I) ≤ ∥Dr( f −g)∥Lq(I)+∥DrQ(g− f )∥Lq(I)

≤ (1+CS)∥Dr( f −g)∥Lq(Ĩ).

If g is the Taylor polynomial of degree ℓ at ξk−p to f in Ĩ, the Taylor interpolation error [4,
Theorem 15] implies that (3.5) holds. □

4 CONSTRUCTION OF LOCALLY STABLE QUASI-INTERPOLATION OPERA-
TORS

In this section we consider the construction of quasi-interpolation operators based on [1, 3] and
apply the results stated in the previous section to analize their local approximation properties in
Sobolev norms.

In order to define a quasi-interpolation operator Q given by

Q f := ∑
β∈B

λβ ( f )β , (4.1)

we need to choose appropriate linear functionals λβ , for each β ∈ B.

Local approximation method. For each knot interval I ∈I , let ΠI be the L2-projection oper-
ator onto Pp(I), the set of polynomials of degree ≤ p on I. If BI := {β I

1 , . . . ,β
I
p+1} denotes the

set of B-splines restricted to I, we have that BI is a basis for Pp(I) and

ΠI f =
p+1

∑
i=1

λ
I
i ( f )β I

i , ∀ f ∈ L1(I),

for some linear functionals λ I
i : L1(I) → R, for i = 1, . . . , p+ 1. Notice that ΠI( f ) = f , for all

f ∈ Pp(I) which is equivalent to say that the set {λ I
i }

p+1
i=1 is a dual basis for BI in the sense

that λ I
i (β

I
j ) = δi j, for i, j = 1, . . . , p+ 1. In view of [1, Theorem 1], there exists a constant C =

C(p,θ)> 0 independent of I ∈ I such that

max
i=1,...,p+1

|λ I
i ( f )| ≤C|I|−

1
q ∥ f∥Lq(I), f ∈ Lq(I), (4.2)

for q with 1 ≤ q ≤ ∞.

Trends Comput. Appl. Math., 24, N. 1 (2023)
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Dual basis for B-splines and quasi-intepolation operator. As explained in [1, Section 6],
we can define each λβ as a convex combination of local projections onto some I ∈ I such that
I ⊂ suppβ . More specifically, for β ∈ B, we define Iβ := {I ∈ I | I ⊂ suppβ}, and for each
I ∈ Iβ , let λ I

β
:= λ I

i0 , where i0 = i0(β , I) with 1 ≤ i0 ≤ p+1 is such that β I
i0 ≡ β on I. Now, the

functional λβ is given by
λβ := ∑

I∈Iβ

cI,β λ
I
β
, (4.3)

where cI,β ≥ 0, for all I ∈ Iβ , and ∑I∈Iβ
cI,β = 1.

Then, the quasi-interpolation operator Q is given by (4.1). Since ΠI is a projection onto Pp(I), it
is easy to check that for any choice of the coefficients cI,β we have that λβi(β j) = δi j, for βi,β j ∈
B, which in turn implies that Q is a projection onto the spline space, i.e., Q f = f , whenever
f ∈ S . Moreover, (4.2) and (4.3) imply that Assumption 1 holds with a constant CQ > 0 that
depends on p and θ . Finally, applying Theorems 3.4 and 3.5 we have that Q satisfies (3.4)
and (3.5), which generalize [1, Theorem 2] when considering high order norms in the left hand
side.

5 NUMERICAL TESTS

In this section we propose two specific ways of defining the coefficients cI,β , for I ∈ Iβ ,
in the framework of the previous section. Each of them, in turn, gives rise a particular
quasi-interpolation operator.

(i) Given β ∈ B, we let the coefficient associated to the central knot interval in the support
of β be equal 1, whenever the mumber of knot intervals within its support is odd; whereas
we define as 1

2 the coefficients associated to the two central knot intervals if such num-
ber is even (cf. Figure 2). More precisely, let us assume that Iβ consists of k = k(β )
consecutive knot intervals, namely, I1, I2, . . . , Ik. Then, we let cI k+1

2
,β = 1 if k is odd, and

cI k
2
,β = cI k

2 +1
,β = 1

2 if k is even.

Figure 2: The procedure from (i) for the choice of coefficients cI,β in (4.3) for some B-splines β

(solid lines).

(ii) We define cI,β =

∫
I β (x) dx∫

suppβ
β (x) dx

, for I ∈Iβ . The operator defined with this specific choice

of coefficients cI,β has been introduced in [6] where it was called Bézier projection.

Trends Comput. Appl. Math., 24, N. 1 (2023)
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In Figure 3 we consider the L2- error in approximations of the function f (x) = arctan(25x), for
x ∈ [−1,1], in spline spaces of degree 4 (left) and degree 5 (right) with maximum smoothness
defined onto uniform partitions. We consider four kinds of approximations: the L2-projection ΠL2

onto the spline space, the quasi-interpolant Q0 defined in [4, Section 1.5.3.1], and the operators
Q1 and Q2 obtained by picking the coefficients cI,β as described in (i) and (ii), respectively.
In these cases, we obtain the optimal orders of convergence for all the considered methods.
However, it is worth to notice that the behaviour of Q1 and especially Q2 are quite similar to the
best approximation ΠL2 .

Figure 3: L2-error in different approximation methods for f in spline spaces of degrees 4 (left)
and 5 (right) with maximum smoothness onto uniform meshes.

In Figure 4 we consider the L2- error associated to the four mentioned operators in the approx-
imation of the function g(x) = sin(x0.35e0.22x), for x ∈ [0,10], in spline spaces of degree 4 (left)
and degree 5 (right) with maximum smoothness defined onto uniform partitions. Now, we obtain
a suboptimal order of convergence in all cases due to the lack of regularity of the function g.
But we notice that, as in the previous case, the errors for Q1 and Q2 are basically like the error
for ΠL2 .

In Figure 5 we consider the number of degrees of freedom (DOFs) vs. ∥g −Q1(g)∥L2 . We
compare the performance for splines of degree 4 (left) and degree 5 (right) with maximum
smoothness with globally continuous splines of the same degrees defined both on the same
type of mesh. First, we consider uniform meshes and we obtain suboptimal rates of conver-
gence as before, but in this case the space of splines C0 works better. For example, in order
to get an error ≈ 10−4 using splines of degree 4 with maximum smoothness we requiere 2564
DOFs whereas using splines C0 we only need 641 DOFs, i.e., four times less. Additionally, in
Figure 5 we consider also adaptive meshes. Given the mesh I , we compute the local errors
∥g−Q1(g)∥L2(I), for I ∈ I . Then, we refine dyadically the elements where the local error is
greater than 0.3maxI∈I ∥g−Q1(g)∥L2(I). We notice that using adaptive meshes we recover the

Trends Comput. Appl. Math., 24, N. 1 (2023)
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Figure 4: L2-error in different approximation methods for g in spline spaces of degrees 4 (left)
and 5 (right) with maximum smoothness onto uniform meshes.

Figure 5: The decay of ∥g−Q1(g)∥L2 for splines of degrees 4 (left) and 5 (right) with maxi-
mum smoothness and globally continuous splines of the same degrees onto uniform and adaptive
meshes.

optimal order of convergence in all cases. But now, using splines of maximum smoothness we
can achieve a given accuracy with half of the DOFs used by C0 splines.
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