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ABSTRACT. The aim of this paper is to apply the diffusive metric technique defined by the spectral
analysis of graph Laplacians to the set of the 41 cities belonging to AMBA, the largest urban concentration
in Argentina, based on public transport and neighborhood. It could be expected that the propagation of any
epidemic desease would follow the paths determined by those metrics. Our result reflects that the isolation
measures decided by the health administration helped at the atenuation of the actual spread of COVID-19
in AMBA.
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1 INTRODUCTION

Let ¥ = {1,2,...,n}, n > 1 be the set of vertices of the graph & = (”I/,éo,c"i,j), where & =
{{i,j}:i,j € ¥} is the set of all edges, @ = (ay,az,...,a,) is the sequence of positive weights
of the vertices and A = (A;;) is the matrix of no negative weights of the edges. Assume also that
A;;=0forevery j=1,...,n. We say that ¢ is a simple undirected weighted graph based on #'.
Set G(¥) to denote the class of all such simple undirected weighted graphs based on ¥.

Let (Q,.7,2) be a probability space. Let ¢ : Q — G(¥) be a graph valued random variable
defined in Q with ¥ and & fixed. So that 4 (w) = (”f/,éa,ﬁ(w),/?(a))) with @ : Q — R" a ran-

dom vector with positive components and A:Q — R™" a random matrix with non negative
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784 DIFFUSIVE METRICS INDUCED BY RANDOM AFFINITIES ON GRAPHS

entries, with A;; = 0 and A;; = Aj;. So that g; : Q — R and A,'j Q> Raren+n®>=n(n+1)
given random variables. Assume that all of them belong to L!(Q, 2?), i.e. they have finite first
moments/ lai|ld?? = /a,d@ < oo and/ |Aij|ld P = / A;jd P < 0. We shall also assume

n n
the normalizations Za, =1land ) ZA, i(w) =1 forevery o € Q.
i=1 i=1j=

The expected graph is E(¥) = (”I/,éa,E(ﬁ),]E(Z)), with E(@) = (Eay,...,Ea,), and E(A) =
(EA;j:i,j=1,...,n). Notice that Eq; > 0 and EA;; > 0, and that
i )

n n n n
Y Eai=E () a | =E(1)= 1,ZZEA,-,=E
i=1 i=1 i=1j=1
Many interesting questions arise regarding the relation between the analysis provided by each

lagh

graph ¢ (w) and the analysis provided by the graph E(¥). In this paper we focus on building a
metric, by the diffusion method given in [1], on the graph E(%¢). For a different approach see [2].

This search is motivated by the application to the analysis of the transportation of people between
the 41 cities in AMBA (Buenos Aires) in the COVID-19 context, through different ways of
passengers transport. The acronym AMBA is used to name the 41 cities that concentrate one
third of the total population of Argentina and is spatially concentrated around Buenos Aires City.
The total population of AMBA is of about 16.7 millions. The Figure 1 depicts their distribution.

Aside from the geographical distance between locations i and j in the map there is a valuable
information given by the public transport system in AMBA. The system SUBE (unifier system
of electronic ticket) keeps a great amount of information that allows to have another geometry
provided by a connectivity distance built on this big data source. With the idea of considering at
once a diversity of affinities between two cities i and j, such as euclidean distance, neighborhood,
public transport, private transport, etcetera, we introduce a diffusive metrization of the graph that
takes into account these diverse factors which all together contribute to the motion of people
inside AMBA.

Section 2 is devoted to introduce theoretical background of our general setting. In Section 3 we
apply the metric built in §2 to some particular cases of affinities for the graph AMBA. Here we
draw the families of balls in these metrics in order to have a picture of the behavior of distance
measured in terms of transport. We also give here empirical estimates of the norms of the dif-
ferences between metric matrices coming from different combinations of ways of transport. In
Section 4 we compare the metric maps obtained above with the actual spread of COVID-19 in
AMBA during different steps of the pandemic growth in Argentina.

Trends Comput. Appl. Math., 23, N. 4 (2022)



M. F. ACOSTA, H. AIMAR, I. GOMEZ and F. MORANA 785

1. Almirante Brown 15. Avellaneda 29. Berazategui
2. Berisso 16. Brandsen 30. CABA
28 3. Campana 17. Cafiuelas 31. Ensenada
4. Escobar 18. Esteban Echeverrfa 32. Exaltacién de laCruz
5. Ezeiza 19. Florencio Varela 33. General Las Heras
3
12 6. General Rodriguez 20. General San Martin 34. Hurlingham
7. ltuzaingé 21. José C.Paz 35. La Matanza
32 8. Lanus 22. LaPlata 36. Lomas de Zamora
4 9. Lujan 23. Marcos Paz 37. Malvinas Argentinas
= 10. Moreno 24. Merlo 38. Morén
11 12 11. Pilar 25. Presidente Perén  39. Quilmes
37 26
2L 14 12. San Fernando 26. San Isidro 40. San Miguel
40 20
9 13. San Vicente 27. Tigre 41. Tres de Febrero
10 34 41 30
6 7 38 14. Vicente Lépez 28. Zarate
15
24 8
39
35 36
29
23 18 a )
5 19
33 25 2
22
13
17
16

Figure 1: A map of the 41 cities of AMBA. Buenos Aires city (CABA) has the label 30.

2 METRIZATION OF RANDOM GRAPHS

Let (Q,.7, ) be a probability space. We say that a function ¢ defined in Q with values on the
simple undirected weighted graphs on ¥ = {1,2,...,n}, is arandom graph on ¥ with finite first
moments if 4 (w) = (¥, &,d(0),A(0)) with ¥ = {1,2,....n}, & = {{i,j} :i,j € ¥}, d(0) =
(ai(@) :i=1,...,n), Alw) = (Ajj(®) :i,j =1,...,n) with each g;(®) and each Z,-j(a)) in
LY(Q,.7,27). We shall also assume the probabilistic normalizations

for every w € Q and that ¢;(®w) > 0 for eachi € ¥ andfiij(a)) >0fori,je ¥ and w € Q.

With the above notation, it makes sense to consider a notion of expected graph E¥Y =
(7/,5,1@5,1&?), with @ = (Eay ..., Ea,) and EA = (BA;; :i,j € ), Ea; = / a;(0)d P ()
Q

and EA,'j = / Aij(a))d,@(a)).
Q

Proposition 2.1. Let 4 (®) and EY as before. Then

Trends Comput. Appl. Math., 23, N. 4 (2022)
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(i) Ea; > 0 foreveryi€ ¥V ;
(ii) EA;; > 0 for everyi,j€¥;
(iii) ¥ Ea; = 1;

(iv) X, Yo EAjj = 1.

Proof. (i) Since a;(®) is positive for every ® € Q, the sets Q; = {w € Q: 27 < a;(w) <271}
for k € Z forms a disjoint partition of Q. In other words

Q=J&%, %NQ =0
kEZ

Hence 1 = 2(Q) = Y1z 2 (). So that for some ko € Z we have that & (€, ) > 0. Then

Ea,:/a,( 0)dP = 2/ ai(@ d,@>/ a(@)dP > 270 P(Q) > 0.
Q

keZ Q,

The proofs of (if), (iii) and (iv) are clear. O

Notice that under the assumptions g;(@) > 0, A;j(w) > 0, Y a;(w) = 1 and
=1 Xj=1Aij(@) =1 we have that each g; and each A;; belong to L*(Q, 7, ¥) CLY(Q,7,2).

Given a graph I' = (¥, & ,Eiﬁ) the Laplacian on I is given by
n
Z ()

when f: 7 — R is any function defined on the set of vertices. In matrix notation

Arf(i)

Q‘»—A

Ar = a! (Z—lz))

with @' =diag (a;',...,a; ') and D = diag (¥, 21 A1), .- -, ¥ jsnAnj)-
Notice now that for a given random graph on ¥, 4(w), as before we have at least two ways

of considering an expected Laplacian. The first it to apply the above definition of the Laplace
operator to I' = E9. In fact

Agy f (i)

i /()

is well defined from Proposition 2.1. The second way is to ask for the existence of an expected
Laplacian for the random Laplacian defined by

Ao f(D) = Ay(o) (D) = ——= Y Aij(@) (f()) — f(D)),

o€ Q,ie V. Itis clear that with the current hypotheses on the a;’s the expected Laplacian
EA not necessarily exists. On the other hand, it is also clear that when the a;’s are deterministic

Trends Comput. Appl. Math., 23, N. 4 (2022)
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(constant) we have that EA, = Agy. Actually in our application this will be the case. Neverthe-
less, for the sake of theoretical completeness we give some sufficient conditions on the random
graph in order to guarantee the existence of the expected Laplacian and to produce a formula to
compute it. This is done in the next result.

Proposition 2.2. Let 4 (Q) be a random graph on ¥ = {1,...,n}. Assume that a;(®) > 0 for
every i € ¥ and @ € Q Y a;(0) = 1 and a;' € L'(Q,.F,P) for every i € V. Assume
that Aij(®) > 0, iy Yoy Aij(@) = 1 for o € Q. If each a;(®) is independent of the random
variables Ay (o) for every {k,0} € &, then with

1

Ag o) (i) = a(®)

Y Aij(@) (f() - f(i), 0eQ, ic¥,
j=1
7 s o) 7 -1
we have that EAy () = Ag with 9 = (V,zo@,b,]EA), b= (b1,by,...,b,) and b; = (Eail) )
1
a;(o)
1

a;(®) with all the Azy(®), we have that 7@y is a random variable which is independent of the

Proof. Since we are assuming the finiteness of / dZ(®) and independence of each
Q

n
random variable

Ajj(@) (f(j)— f(i)) forany f: 7" — R. Hence

j=1
E (Ag()f(i)) = E (;) E (Xn:AU (f(4) —f(l))>
i j:]

- Y B () - £()
()

-1 zl E (Ay) (F(7) — £(0))
i j=

= A f (i),

as desired. .

Once we have a Laplacian defined on (¥,&) which could be Agy or EA, we can build the
diffusive metric on ¥ (see [1]). For completeness, let us state and prove the basic facts regarding
the constructive of these metrics.

Teorema 2.1. Let ' = (¥, &,b;, Bjj) be a simple undirected weighted graph. Then
a) the operator Ar is selfadjoint with respect to the inner product

(Fg)s = Y F0)s(i)bi:
=1

b) the operator Ar is negative definite, i. e.

(Arf,f) <0, forevery f:

Trends Comput. Appl. Math., 23, N. 4 (2022)



788 DIFFUSIVE METRICS INDUCED BY RANDOM AFFINITIES ON GRAPHS

¢) the operator Ar is diagonalizable, i. e. there exist a sequence Ay < Ap_p < -+ < A1 <
Ao = 0 and an orthonormal sequence @o, @1, ...,0,_1 with respect to the inner product
(, ) such that
Ar¢; =A@y, for i=0,1,....n—1;

d) foranyt >0, the functiond; : V' x ¥V — R given by

n—1
di(i,j) = \| X e¥™|e(i) — 9u(j)?
(=0
is a metricon V.

Proof. a) Let f and g be two functions from ¥ to R, then since B; = Bji,

(Arf.g); = ; (Arf) (Ds(i)bi
= i (; f,le](f(]) _f(l))> g(l)bz
i= Lj=
= i iBij(f(j) —f(0)g()

~.
Il

=

Il
T
=
)
o
>\
'M=
=
~.
=
%
~

M= -

g .
~.

;: .

~.
Il
T
1

=
=

if ()8 (i) —

Il
™=
&
\

<
Il
-
I
-
~.
Il
-
Il
-

= i Zn: Bijf(j)g(i) — Zn‘, Zn: Biif(i)g(i)
i=1j=1 i=1j=1

- i (; Zn:le/ ) —g(i))) £(i)bi
i= ij=

= (f.Arg);
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b) Since B;j = Bj; we have

(ALt )y = zl< A ) () (D)
_ 1 zl By (£(i)— £())) £(0)
_ ,i,nle”fz( i) lf”f]B,,f( 01()
_ z z By (12() ~ £ 1))
= % lg;a, (£ - F)F () +§§BH (f2@) = f() ()
-1 ):1 Zl Bij (£2(0) + £2() = 2£ ()£ ()
-1 l)”:]j”lsij(fm —F()’
>0

¢) follows from a) and b) since we are dealing with a self-adjoint and negative definite matrix Ar.
Since the constant functions are Ap-harmonic we hare that Ay = 0 is the eigenvalue corresponding

~1/2
to the eigenfunction @ (i) = ():']’-:1 b j> fori=1,...,n, which has the L? norm given by the
inner product ( , ); equal to one.

d) it is clear that d; is nonnegative, symmetric, faithful and satisfies the triangle inequality for
every ¢ > 0. Let us notice here the d,(i, j) is the L>(#,b) norm of the difference of the heat

kernels at i and j provided by the diffusion a—l: = Aru. g

As a general reference for the above see for example [3].

3 THE CASE OF AMBA (BUENOS AIRES)

In this section we effectively compute and sketch some families of balls, the metric provided by
d; in Theorem 2.1 for several natural instances of affinity matrices A;; and some of their means
and a couple of instances for the weights a; at each node. All the underlying computations are
performed in Python. In order to show our results in a compact way we shall first introduce the
families of affinities A;; that we shall use and the weights a; that we consider.

Our basic vertex setis ¥ = {1,...,41} one for each city in AMBA. The first, and perhaps more
relevant matrix concerning the spread of COVID-19 in this setting, is the matrix built with the
data of SUBE provided by the public transport in AMBA. This matrix takes onto account buses,
subte (metro), trains and even fluvial public transportation. We shall denote it by A?. We exhibit

Trends Comput. Appl. Math., 23, N. 4 (2022)



790 DIFFUSIVE METRICS INDUCED BY RANDOM AFFINITIES ON GRAPHS

in Figure 3 the full unnormalized form of the 41 x 41 matrix A°. We shall as well consider some
neighborhood matrices. With A' we denote the normalization of the matrix that takes the value 1
at (i, j) if the cities i and j share some points of their boundaries, and zero otherwise. In Figure 2
we show a small part of A! (unnormalized). With A% we denote a better quantified weighted
approach of A! that takes into account the length of the shared portion of the boundary between
cities i and j. See Figure 4. Since the population of different cities is in several instances quite
different for two neighbor cities, we consider still another matrix that we denote A3, which takes
into account the length of the shared boundaries and also the minimum of the population of the
two neighbor cities. Precisely, the unnormalized matrix A® i given by A?j equals the product of
the length of the shared boundaries times the minimum of the population of the two neighbor
cities. Figure 5 depicts a part of this matrix. For last, the matrix A* considers only the minimum
of the populations of any two neighbor cities. The matrix A* is partially showed in Figure 6.

Regarding the weights ; at the nodes, we shall consider only two a: the uniform d; = (%, ey 4—11)

and a normalization of the density of the disease in each location (total number of active
infections over population) by July 2020, given by

a@, = (0.0023,0.0009,0.0004,0.0014,0.0015,0.0009, 0.0012,0.0030,0.0007,0.0009, 0.0011,
0.0015,0.0008,0.0016,0.0049,0.0005,0.0006,0.0018,0.0015,0.0031,0.0013,0.0008,
0.0012,0.0010,0.0019,0.0022,0.0014,0.0006,0.0019,0.0095,0.0011,0.0004,0.0015,
0.0018,0.0018,0.0026,0.0013,0.0018,0.0029,0.0018,0.0034)

o[ o] o] o[ o] 0] 0] 0] O ooooo_ooﬁoo.oomoooo 0 of] o 0
o[ o[ o[ o[ o[ o[ o[ 0[O0 o[ o[ o[ o[ o o[ o[ o offlll o] 0] o[ o[ o[ o o[ ol o[ 0 0 ol o[0[0
o[ o[ offi{ o[ o[ o[ 0[ 0 o[ o[ o[ o[ o[ o[ o[ o[ o] o] o o] o] o] o[ o[ 0| 0 0 o[o[0[ 0
00 o[o[o[0[ 0 o[ 0[ 0| 0| 0] 0] 0| 0 0] 0] 0] 0] 0] OJE| o[ 0[ 0] 0| 0[ 0 O o[o[0[ 0
00 o[ o[ o[ o[ o[ o] o o[l o] o ofEjE o[ o[ o[ o[ o[ o[ 0| 0| 0| ©[ 0 0 0] 0] O] O o[o[o[0[ 0
00 0[0[0[ 0 0] 0[0[ 0 0| 0| 0[ 0 o[ o[ off[ o] 0] 0] 0] o[ 0| 0| 0| O 0| 0[ 0 0] 0] 0] 0] 0
00 o[o[0[0 o[ o[ o[ o[ o[ o[ o[ o[ o[ oo o o[ o[ o[ o[ o[ 0| O] © o[ o ofj| o ©
I 0[0[0[ 0 [ o[ o[ 0 0| 0[ 0] 0] 0 0 0] o[ 0] 0] 0] o o[ 0| 0| 0| 0| O 0| 0 0
0o ofiil o[ 0 o[ o[ o] o[ o[ o[ o[ o[ o[ o[ o[ o[ o] o] o[ 6] o[ 0 O] © o[ o[ o[o[ o[ o[ o[ 0
00 0 0 o[ o[ o[ o[ o[ o[ o o] ofg| of off o] o[ o[ o[ o[ o[ o] 0| 0[ 0| 0| o[ o] o] off ©
o[ ofgEjmE ofi4| o] 0 o[ o[ o[ o[ o[ o[ o[ o] o off| o[ 0| o[ o[ 0 0 0 0] 0] O oooohoooo
o[ oj@|;8] o] o[ o[ o] o] o[ o[ o[ o[ o[ o[ o] o[ 0[ 0] 0| 0 0] 0] 0] O o[ o[ o[ o[ o[ o[ o[ o[ o[ o[ 0 0] 0] 0
o[ o o| o[ o[ o[ o[ o[ o[ o] o] o] o oI o[ o| O o[ 0 o[ o[ o[ o[ o[ o[ o[ o[ o[ o[o[o[o[o0]0
o[ o[ o[ o[ o[ o[ o[ 0] o[ o[ o[ o[ o 0] 0 0 0| o[ o[ o| ofji] o o o o] o[ o[ o[ o[ o[ 0| 0| 0] 0 O
o[ o[ o[ o[ o| o oj 0] o[ 0] 0] 0] 0] 0 o[ 0| o[ o[ 0] 0] 0] 0] o[ 0] o] off o] o 0 0 0] 0| 0| OjE| 0] 0
o[ o[ o[ o[ o[ o[ 0| 0] 0 o o of§d| o] 0 o[ o[ o[ ofjl o[ o[ o[ o[ o[ o] 0] 0] 0] o[ o[ o[ 0] 0[ 0| O] O] O O
0] 0] 0 Ol 0| 0| 0] 0] o[ o offd[ 0] 0 o[ o[ 0[O o[ o[ 0[ 0| 0[0[0[ 0[O o[ 0[ 0[ 0] 0[ 0
o[ o[ ojg#| o[ o[ o o o[ o[ o] o[ 0] 0 o[ o[ o[ 0 ofj# o[ o[ o[ o[ o[ o[ o[ 0[ 0 o[o[o[0[ 0
0] 0[ 0| o[ 0 0| 0| 0] of o o o[ 0 o[ o[ 0[0 O[3 o[ o[ o|i o[ o[ o[ o[ o] o] of o] offH 0[ 0
o[ o[ o[ o[ o[ o[ o[ o[ o[o[o o ol 0 o[o[0[0 0 0 o[o[o[o[o[o[0[0]0

Figure 2: Unnormalized 20 x 41 submatrix of A!, the adjacency matrix provided by the neigh-
borhood relation A}j = 1 when cities i and j share points of their boundaries.
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Figure 4: Unnormalized 20 x 20 submatrix of A, the adjacency weighted matrix provided by the

length of the shared portions of the boundaries of the two cities.
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Figure 5: Unnormalized 20 x 20 submatrix of A3, the weighted matrix provided by the product

of the lengths of the shared boundaries times the minimum of their population.

The result of Section 2 generate a diversity of metrics on ¥ = {1,2,...,41} provided by any
choice of A € {A° A", A%, A3 A*} and @ € {d@,,d,}. Moreover from Proposition 2.2 in Section 2
any convex combination of matrices A provides a Laplacian and a corresponding family of met-

rics on #. Sometimes we shall use a convex combination of A? and A’ with i = 1,2,3,4, i.e.
A=0A%4(1—0)A" with 0 < @ < 1. In this cases we write d,l"e;J to denote the metric provided
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Figure 6: Unnormalized 20 x 20 submatrix of A*, the matrix provided by the minimum of the
population of any two neighboring cities.

by Theorem 2.1 with B = 0A° + (1 — 0)A’ and b = @;. We shall use the standard notation for
balls keeping the above notation, precisely

By (k)= {t eV :di* (k0) <r)

forke ¥, r>0,i=0,1,2,3,4and 0 < 0 < 1.

A way to schematically depict the unrestricted paths of COVID-19 propagation from the point
(CABA) with higher initial concentration of diseases is to consider for each metric the balls
centered at CABA (30) and growing radii.

Using a prescribed scale of colors we can run our algorithm in Python in order to obtain a di-
versity of images for propagation due to the above described notations of neighborhood and
transport and their convex combinations. With the above introduced notation we give the follow-
ing illustration of the results. In Figure 7 and Figure 8 we use always ¢t =0.25 and j = 1, the other
parameters are explicitly given. The center is always 30 (CABA), the growing radii are colored
according to the given scale.

Some global comparison of the different metrics are in order. In Table 1 we shall show the
comparison of the metric induced by public transport (SUBE) with the metrics induced a convex
combination of the SUBE data and some of the neighborhood matrices defined above only for
the case of aj, the uniform distribution (a,- = ﬁ) of the vertices of the graph. Here we compute
the relative deviations with respect to the metric induced just by public transport. Let us precise
the above. Set

,051 i,0;1
o |l =
l’, —
& = 0,0;1 ’
Jar]
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0,0;1
d0.25 (307 :

)
65 65
60 6.0
55 55
5.0 5.0
45 45
40 40
35 35
30 30

Figure 7: Diffusion distances to CABA (30) for t = 0.25 with affinity matrix A and node uniform
weights given by aj.

where dto 01 i the metric matrix associate to the public transport only and a’,i’e;1 are the metrics

defined above. The norm considered here is the Euclidean one, i.e.

) 2 n
0,0;1 i,0;1 o
d; —d, H = E
k(=1

. ‘0. 2
dP! (ks 0) =i (kD)

and

1112 /1 . 2
£ = 3 (@)’

k=1

Table 1: Relative differences.

g0 | 0.12035607 | £"*° | 0.0609088

g0 1 0.17173178 | €% | 0.091446

e | 00644136 | £ | 0.0306021

€0 1 0.09062579 | %7 | 0.04661433

In Table 1 we observe that, as it could be expected and as it reflected by the colored maps in Fig-
ure 8, the largest relative differences with the metric provided by the public transport are those
given by matrices A! and A which only take into account neighboring, with no reference to the
sizes of populations. On the other hand, for matrices A3 and A* which take into account popu-
lations, the results are closer to that of the pure public transport matrix A?. All the interpolation
cases show, at least with 6 = 0.5 a closer behavior to that of A°.
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4101 J105:1
dy)s (30,- dys (30,
2,01 20.5:1¢
dy)s (30, dyas (30,
3,01 3,0.5:1
dyhs (30,°) dyns (30,-)

Figure 8: Diffusion distances to CABA (30) for = 0.25 in eigth different instances of affinities
(0A° + (1 —6)A withi=1,2,3,4and 6 =0, %) and node uniform weights given by aj.
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4 DISCUSSION

As we show in Section 3 all the above considered versions of the diffusive metric, provide in
some way a measure of closeness of any given pair of the cities of AMBA. These metrics take
into account some classical notions of proximity such us neighboring and size of the shared
boundaries.

Nevertheless, each of the above considered metrics take into account the public transportation
in AMBA as central contribution to their definitions. Let us notice that in any of the above
considered metrics the cities of Buenos Aires and La Matanza, labeled 30 and 35 respectively
can be considered as a urban unity of 3075000 4+ 2280000 = 5355000 people. They share 10
kilometers of densely populated boundaries, and they have an intense people traffic through
public transportation by buses and trains. The above statement can be seen in Figure 7 and the
eight maps in Figure 8 that show quite close colors for the cities 30 and 35. In what follow we
shall contrast these, let us say, purely geometrical considerations with the actual dynamics of the
spread of COVID-19 taken from public data in [4]. We shall provide two different approaches
for this comparison.

First, for each one of the 41 cities we computed the time passed until the number of infected
people surpass the threshold of x% of the population with x = j - %, j=12....,20.

The maps provided by the data are of the type depicted in Figure 9

45

L

Figure 9: Days up to 0.1% of infections over the population (from 0.1% of CABA).
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and Figure 10 for j = 1 and j = 3 respectively.

70

20

Figure 10: Days up to 0.3% of infections over the population (from 0.1% of CABA).

Second, if we measure, for fixed dates, the amount of the total infections normalized by the
population of each city we obtain the patterns depicted in Figure 11.

We observe that in the six instances in Figure 11, we are using the scale of colors in such a way
that, the cities with high density are depicted with the lower frequencies.

All the metrics in the models of Section 3 place La Matanza as the closest city to CABA. This
fact is by no ways reflected by the actual data regarding the spread of the pandemic in AMBA.
In fact while for CABA we have the red distribution as a function of time in Figure 12, for La
Matanza we have the blue one.

This lack of coincidence in the dynamics of these two large cities that share a big portion of
their boundaries is certainly multicausal but it can be reasonably attributed to the government
decisions regarding the social preventive isolation starting on March 20th, 2020, which in par-
ticular produced a drastic reduction of the public transportation of people in AMBA. Also some
consideration has to be paid to the difference of population densities of the two largest cities of
AMBA: CABA 15150 inhabitants per km? and La Matanza 7062 inhabitants per km?.
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Figure 11: Percentage of total infections for the first and second halves for June, July and August
2020.

27 % Population

10 20 30 40 50 60 70 80

Figure 12: Evolution of cases in CABA (red) and La Matanza (blue).
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Let us finally observe that among the several papers dealing with the issue of COVID and people
transportation, we were unable to find the application of diffusive metrics. Neither other quanti-
tative methods for the particular case of AMBA. Some graph based models are used for example
in [5] and [6].
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