
i
i

“A10-1624-9308” — 2022/4/26 — 9:03 — page 349 — #1 i
i

i
i

i
i

in Computational and
Applied Mathematics

Trends Trends in Computational and Applied Mathematics, 23, N. 2 (2022), 349-361
Sociedade Brasileira de Matemática Aplicada e Computacional
Online version ISSN 2676-0029
www.scielo.br/tcam
doi: 10.5540/tcam.2022.023.02.00349

A New Approach to the Splitting Factor Preconditioner
Applied to Linear Programming Problems

P. A. KIKUCHI1* and A. R. L. OLIVEIRA2

Received on September 14, 2021 / Accepted on December 27, 2021

ABSTRACT. In this paper, we present the results of a new approach to the splitting factor preconditioner,
which is a preconditioner based on the Incomplete Cholesky factorization and the splitting preconditioner.
In previous work for small linear programming problems, the preconditioner was applied in all iterations
of the interior point method and compared with the splitting preconditioner also applied in all iterations.
In this paper, we will do a hybrid approach, in which in the first iterations the preconditioner is the In-
complete Cholesky Factorization, and in the last iterations, the preconditioner used is the splitting factor
preconditioner or the splitting preconditioner. The results obtained show that even in the hybrid approach,
the splitting factor preconditioner achieved better performance.

Keywords: preconditioner, linear programming, signal processing, compressive sensing.

1 INTRODUCTION

A linear optimization problem consists of minimizing or maximizing a linear objective function,
subject to a finite set of linear constraints. Restrictions can be either equality or inequality. The
standard form of a linear optimization problem is called a primal problem and is given by:

minimize cT x
subject to Ax = b

x≥ 0,
(1.1)

where A ∈Rm×n is a constraint matrix, x ∈Rn is a column vector, whose components are called
primal variables, and b ∈ Rm and c ∈ Rn are column vectors, with c being the costs associated
with the elements of x.

*Corresponding author: Paula Aparecida Kikuchi – E-mail: paula.kikuchi@uems.br
1Universidade Estadual de Mato Grosso do Sul, R. Emı́lio Mascoli, 275, 79950-000 Naviraı́, MS, Brazil – E-mail:
paula.kikuchi@uems.br https://orcid.org/0000-0002-9202-9112
2Departamento de Matemática Aplicada, IMECC, Universidade Estadual de Campinas, R. Sérgio Buarque de Holanda,
651, 13083-859 Campinas, SP, Brazil – E-mail: aurelio@ime.unicamp.br https://orcid.org/0000-0002-6471-4710

i
i

“A10-1624-9308” — 2022/4/26 — 9:03 — page 350 — #2 i
i

i
i

i
i

350 SPLITTING FACTOR PRECONDITIONERS

We define a vector x̄ such that Ax̄ = b, x̄ ≥ 0, as a feasible solution. A x∗ solution is optimal
when, in addition to being a feasible solution, it admits the lowest possible value for the objective
function.

In case the restrictions Ax = b are inconsistent, we will have no feasible solution. This problem
is called infeasible. If there is a feasible solution, the objective function can be unlimited or
limited in the domain, being thus called an unlimited and limited problem, respectively. There is
no optimal solution if, and only if, the problem is infeasible or unlimited.

For a given primal problem, we can always build an associated problem, which we call dual prob-
lem [1], which consists of the same given components, arranged differently. The dual problem of
(1.1) is given by:

maximize bT y
subject to AT y≤ c

y ∈Rm,

(1.2)

which is equivalent to

maximize bT y
subject to AT y+ z = c

z≥ 0
y ∈Rm,

(1.3)

where y being a column vector belonging to Rm, called a dual variable vector, and z a column
vector belonging to Rn, a slack variable vector.

Below we define the Optimality Conditions (algebraic conditions are satisfied when solving
linear programming problems).

Optimality Conditions

Given a (x,y,z) point, it will be optimal for primal and dual problems if, and only if, the following
conditions are satisfied:

Ax = b
AT y+ z = c
XZe = 0
(x,z)≥ 0,

(1.4)

X and Z are diagonal matrices formed by the elements of the vectors x and z, respectively, and e
the vector of numbers one.

Trends Comput. Appl. Math., 23, N. 2 (2022)

i
i

“A10-1624-9308” — 2022/4/26 — 9:03 — page 351 — #3 i
i

i
i

i
i

P. A. KIKUCHI and A. R. L. OLIVEIRA 351

1.1 Newton’s Method Applied to Optimality Conditions for Linear Programming
Problems

Note that we can rewrite the optimality conditions (1.4) for a linear programming problem in a
slightly different way, defining a function F from R2n+m to R2n+m:

F(x,y,z) =

 Fp

Fd

Fa

=

 AT y− c+ z
Ax−b
XZe

= 0,

supposing that (x,z)≥ 0.

To solve this nonlinear system, we applied the Newton method [12] to the Optimality Conditions,
approximating F by the truncated Taylor series and proceeding in a similar way to the process
described in [12] referring to the Newton method for several variables. Thus, we obtain:

F
(

xk+1
)
≈ F

(
xk
)
+∇F

(
xk
)T (

xk+1− xk
)
= 0

⇒−F
(

xk
)
= ∇F

(
xk
)T (

xk+1− xk
)

⇒ xk+1 = xk−
(

∇F
(

xk
))−T

F
(

xk
)

⇒ xk+1 = xk +d ,d =−
(

∇F
(

xk
))−T

F
(

xk
)
.

The conditions such that the method converges can be found at [12].

2 PRIMAL-DUAL METHOD

The 1984 publication of [7] was probably the most significant event in linear programming since
the simplex method [16]. One of the reasons why the paper aroused great interest was because the
author stated that the method had an excellent performance for large linear problems. This paper
caused a revolution in the research of linear programming problems, leading to computational
and theoretical advances in this area. From this paper and other works, the Interior point methods
emerged, which until today have been developing. The theory, together with computational ex-
periments, shows that primal-dual algorithms perform better than other Interior Point Methods,
as well as perform better than the Simplex method for large problems [16]. We describe below
the Predictor-Corrector Method.

2.1 Predictor-Corrector Method

The Mehrotra Predictor-Corrector Method [9], which is used in this paper, is based on three
components:

• Affine-scale direction, which corresponds to the predictor step, which consists of finding
a direction of the affine-scale optimization problem.

Trends Comput. Appl. Math., 23, N. 2 (2022)

i
i

“A10-1624-9308” — 2022/4/26 — 9:03 — page 352 — #4 i
i

i
i

i
i

352 SPLITTING FACTOR PRECONDITIONERS

• Centering direction, defined by the σ parameter of the primal-dual path-following method
[16], remembering that the centering direction prevents solutions along the iterations from
approaching the coordinated axes, thus maintaining the strictly positive xizi product. In
the primal-dual path-following method we add a perturbation µ to the complementarity
condition (XZe = µe), the centering direction allows us to take larger steps of Newton’s
direction, since the positivity condition is only violated with a step size larger than when
we consider µ equal to zero.

• Correction direction, which corresponds to the correcting step, in which we calculate the
non-linear correction, trying to compensate for the linear approximation of the Newton
Method. For example, in a linear programming problem in the standard form, the non-
linear term is given by XZe.

The predictor-corrector method consists of applying the Newton Method twice, using the same
Hessian matrix. Unlike other methods, which disregard the residue of non-linear terms and their
linear approximation using the Newton method, in this method we will introduce the corrections
for the approximations of these non-linear terms XZe.

Thus, the search direction is obtained by solving two different linear systems, but with the same
matrix of coefficients. Initially, the direction affine-scale (∆ax,∆ay,∆az), also called predictive
direction, is calculated by solving the system: A 0 0

0 AT I
Z 0 X

 ∆ax

∆ay
∆az

=

 rp

rd

ra

 , (2.1)

where rp = b−Ax, rd = c−AT y− z and ra =−XZe. Thus, the right side is modified by making
rp = rd = 0, and replacing ra with rc = µe−∆aX∆aZe, where the number µ is the centering
parameter, ∆aX = diag(∆ax) and ∆aZ = diag(∆az); these would be the residuals of the next
iteration, if the primal step size (αp) and the dual step size (αd) are equal to one. The obtained
system is in the form: A 0 0

0 AT I
Z 0 X

 ∆cx

∆cy
∆cz

=

 0
0
rc

 , (2.2)

and with that, we get the so-called centering correction direction (∆cx,∆cy,∆cz).

The search direction (∆x,∆y,∆z), finally, will be given by the sum of the two previous directions:

(∆x,∆y,∆z) = (∆ax,∆ay,∆az)+(∆cx,∆cy,∆cz).

We can determine the search direction avoiding this sum, for that, instead of solving the system
(2.2), we replace ra in (2.1) with rm, where

rm = ra + rc =−XZe+µe−∆aX∆aZe.

Trends Comput. Appl. Math., 23, N. 2 (2022)

i
i

“A10-1624-9308” — 2022/4/26 — 9:03 — page 353 — #5 i
i

i
i

i
i

P. A. KIKUCHI and A. R. L. OLIVEIRA 353

Thus, the system is given by: A 0 0
0 AT I
Z 0 X

 ∆x

∆y
∆z

=

 rp

rd

rm

 . (2.3)

Succinctly, in the predictor-corrector method, we first determine the predictive direction through
the system (2.1), and then we solve the system (2.3), to determine the direction of search. For
more details and a better understanding of the theory that comprises Interior Point Methods,
see [15].

The resolution of linear systems, such as (2.1), is the computationally most expensive step of
the interior point method. Fortunately, in this case, the two linear systems to be solved share the
same coefficient matrix, which, in general, is large and sparse. Note that we can reformulate (2.1)
to obtain linear systems with matrices that are symmetrical, more compact, and easier to handle
than the original. This reformulation is possible because in all iterations, the components (x,z)
are strictly positive and thus the matrices X = diag(x) and Z = diag(z) are non-singular. Thus,
we can eliminate the variable ∆z em (2.1), obtaining the equivalent system:(

−D AT

A 0

)(
∆x
∆y

)
=

(
rd− (X)−1ra

rp

)
, (2.4)

where D = (X)−1Z. The system (2.4) is known as augmented system. After solving the previous
system, we can calculate ∆z using the equation:

∆z = (X)−1(ra−Z∆x).

Since the D matrix is non-singular, we can reduce the augmented system by eliminating ∆x from
the first equation and replacing it in the second, obtaining the following linear system:

A(D)−1AT
∆y = rp +A((D)−1rd− (Z)−1ra), (2.5)

known as normal equations. Since A(D)−1AT is the Schur complement of D in(
−D AT

A 0

)
, (2.6)

it is also usual to say that we use the Schur complement to solve the linear system.

Briefly, in the Interior Point Methods, a linear system corresponding to the Newton Method
applied to the optimal conditions of the problem is obtained. The resolution of such a system
can be done through direct methods, such as LU factorization and Cholesky factorization, or
iterative methods, such as the Conjugate Gradient Method [14]. Cholesky factorization [5] is the
most used method for solving the linear system, but as the calculation of factors can be very
expensive, since, in problems with sparse matrix, its structure can be affected by filling, iterative
methods prove to be a good alternative. As the system matrix is positive definite, we use the
Conjugate Gradient Method for the resolution. This method performs well when the matrices are
well-conditioned, if this does not occur, preconditioning becomes necessary.

Trends Comput. Appl. Math., 23, N. 2 (2022)

i
i

“A10-1624-9308” — 2022/4/26 — 9:03 — page 354 — #6 i
i

i
i

i
i

354 SPLITTING FACTOR PRECONDITIONERS

3 PRECONDITIONERS FOR LINEAR SYSTEMS

The idea of preconditioning has been known for a long time [13], an example is a work proposed
in [4].

Given the Ax = b system, consider the following equivalent system:

M−1AN−1x̃ = b̃, where x̃ = Nx e b̃ = M−1b. (3.1)

The system (3.1) is said to be preconditioned, and M−1AN−1 is called a preconditioned matrix.

When NT = M, where NT corresponds to the transpose of the matrix N, if A is symmetric, we
obtain a symmetric preconditioned system M−1AM−T . In [5] preconditioner is defined as the
matrix P = M ·N, so, if NT = M, the preconditioner P is symmetrical.

In order to achieve rapid convergence, what we want to achieve is a M−1AN−1 matrix closer
to the identity matrix than matrix A. For that, several preconditioning techniques was proposed
[5, 13]. In this paper, we will focus on two preconditioners, incomplete Cholesky factorization
and the splitting preconditioner [11].

3.1 Incomplete Factorizations

Given a sparse positive definite symmetric matrix, when we obtain its Cholesky Factorization
(LLT), fills in entries that are null in A may occur. Thus, L can be much denser than A, causing
the need for more storage space and higher computational cost for the resolution of the linear
system.

When an incomplete factorization of A is obtained, filling in certain entries is rejected. Thus, we
can obtain a factorization of A ≈ L̃L̃T , imposing that L̃ presents some sparse pattern similar to
that of A. A proof of the existence of incomplete Cholesky factorization can be found in [10].

To increase the efficiency of preconditioners, several strategies have been proposed for the con-
struction of preconditioners based on incomplete factorization. To decide whether an element is
discarded during factorizing a matrix, two rules are established; one takes into account the posi-
tion of the non-zero elements of the original matrix and the other takes into account the numerical
value of the padding [2].

Below we highlight a technique that corresponds to the last-mentioned rule:

• Drop tolerance - Given a limit tolerance τ , non-zero elements are accepted in the
incomplete factor if they are greater than τ .

Besides, we can also fix the amount of fill allowed in incomplete factors. This technique is known
as fixed fill-in and predetermines the pattern of non-null elements of the incomplete factor, which
is not necessarily that of matrix A. Thus, we can determine that there is no filling, that is, the
positions in which all non-null elements of the original matrix are coincident with that of the
incomplete factor, which is equivalent, for example, to the incomplete Cholesky factorization

Trends Comput. Appl. Math., 23, N. 2 (2022)

i
i

“A10-1624-9308” — 2022/4/26 — 9:03 — page 355 — #7 i
i

i
i

i
i

P. A. KIKUCHI and A. R. L. OLIVEIRA 355

without filling; or determine that a fixed number of padding be accepted in each column of
the incomplete factor, which is the case with the improved incomplete Cholesky factorization
technique [6].

3.2 Incomplete Factor of the Splitting Preconditioner

In the interior point methods that use iterative approaches, specifically, the conjugate gradient
method, we can use the splitting preconditioner MMT [11]. Let A = [B N]P, where P is a
permutation matrix such that B is non singular, the matrix AD−1AT , with A = [B N]P, can
be rewrite as follows:

AD−1AT = ([B N]P)D−1 ([B N]P)T = ([B N]P)D−1

(
PT

[
BT

N T

])
= (3.2)

[B N]

[
D−1

B 0
0 D−1

N

][
BT

N T

]
= BD−1

B BT +N D−1
N N T .

Given the matrix D, where k corresponds to k−th iteration of the method, the elements of the
diagonal matrix Dk are given by:

dk
ii =

zk
i

xk
i
, 1≤ i≤ n, (3.3)

where all elements dii are positive. The preconditioner MMT is built taking into account the
behavior of the matrix D in the final iterations of the interior point method.

As the method approaches to the solution, we can split the primal and dual variables, xk
i e zk

i ,
in two subsets B and N , such that, B corresponds to the subset that approaches to x∗ > 0 and
z∗ = 0, and N to the subset that approaches to x∗ = 0 and z∗ > 0, with x∗ and z∗ solutions of the
linear programming problem. We are considering that the problem is non-degenerate.

Considering M = BD
− 1

2
B , we obtain the preconditioned matrix

D
1
2
BB−1(AD−1AT)B−T D

1
2
B = I +D

1
2
BB−1N D−1

N N T B−T D
1
2
B

= I +WW T ,with W = D
1
2
BB−1N D

− 1
2

N . (3.4)

The preconditioner is more efficient close to the solution, because (3.4) will be closer to the iden-
tity matrix. Applying incomplete Cholesky factorization to BD−1

B BT (splitting preconditioner)
we determine the separating factor L̂, which is the preconditioner presented in [8]. Thus, we
obtain the preconditioned matrix:

L̂−1AD−1AT L̂−T = L̂−1BD−1
B BT L̂−T + L̂−1N D−1

N N T L̂−T . (3.5)

Note that since L̂L̂T is an approximation of BD−1
B BT , we have to L̂−1BD−1

B BT L̂−T is close to
the identity matrix. So the preconditioner works well in the final iterations, similarly to splitting
preconditioner.

Trends Comput. Appl. Math., 23, N. 2 (2022)

i
i

“A10-1624-9308” — 2022/4/26 — 9:03 — page 356 — #8 i
i

i
i

i
i

356 SPLITTING FACTOR PRECONDITIONERS

In the paper [8], the results obtained in the resolution of linear programming problems are pre-
sented, in which the splitting factor preconditioner and the splitting preconditioner are compared.
The splitting factor preconditioner is used in all iterations in the paper [8], that is, it is not a hybrid
approach, to obtain it we apply the incomplete Cholesky factorization in the matrix BD−1

B BT

referring to the splitting preconditioner, on what A = [B N]P and P is a permutation matrix
such that B is non-singular [11]. The incomplete factor L̂ obtained is called the splitting factor.
The preconditioned matrix is L̂−1AD−1AT L̂−T . In this paper, we will work with a hybrid ap-
proach to preconditioning. In the first iterations, we will use incomplete Cholesky factorization,
in the last iterations, we will use the splitting factor. We will compare this approach with that
used in the final iterations of the splitting preconditioner. For the phase change we will follow
the following criterion used in [3]:

• The initial gap (xT
0 z0) of the linear programming problem is reduced a factor of 106 or

• The number of internal iterations of the Conjugate Gradient Method reaches
m
2

, where m

is the dimension of AD−1AT .

Thus, unlike [8], in this paper we work with preconditioner changes.

4 COMPUTATIONAL TESTS

We present the tests experiments for linear programming problems. The implementation was
performed in Matlab.

4.1 Computational experiments for linear programming problems

We present the results obtained using in the first iterations the incomplete Cholesky factorization
preconditioner and in the final iterations the splitting factor preconditioner, as well as the results
obtained using the incomplete Cholesky factorization preconditioner and in the last ones the
splitting preconditioner. For preconditioner change criteria we will follow the criterion used in
[3]. We emphasize that, despite working with the splitting factor preconditioner as done in [8], in
this paper we work in a hybrid approach, using such preconditioners only in the final iterations.

A predictor-corrector interior point method for bounded variables is implemented. In the final
iterations, the matrix of the splitting preconditioner (BD−1

B BT) is determined and then the in-
complete Cholesky factorization of this matrix, which corresponds to the splitting factor, is used
as preconditioner. To determine the incomplete Cholesky factor, the Matlab internal function
ichol is used. In it, we use drop tolerance with a value equal to 10−3. We also use a diagonal shift
with an appropriate α value.

The experiments are performed with an own implementation in Matlab R2017a on Linux, in a
computer with 4 GB of memory and an Intel® Core(TM) i3-2367M 1.40GHz processor.

Trends Comput. Appl. Math., 23, N. 2 (2022)

i
i

“A10-1624-9308” — 2022/4/26 — 9:03 — page 357 — #9 i
i

i
i

i
i

P. A. KIKUCHI and A. R. L. OLIVEIRA 357

The 39 problems considered in this test can be found at:

• Computational Optimization and Applications (COAP) http://users.clas.ufl.edu/
hager/coap/Pages/matlabpage.html in the mat format.

Table 1 presents the information on the problems used. In all problems the primal variables are
nonnegative and nnz(A) corresponds to the number of non-null elements of the matrix A.

In Table 2 the results obtained are presented, where the time obtained for the solution is given in
seconds, It corresponds to the number of iterations of the interior point method, Ch corresponds
to which iteration the change of phases occurred and FO indicates whether the solution reached
is optimal. When the problem obtained a Not a Number solution, we indicate it with NaN.

The values in red in the column referring to time (Table 2), correspond to the problems in which
the method with the splitting factor preconditioner was faster. In the It column, which corre-
sponds to the number of iterations required for convergence, the values in red refer to the prob-
lems with fewer iterations in relation to the splitting preconditioner. We denote in bold when the
same number of iterations was observed for the two preconditioners.

The method with the new preconditioner and hybrid approach was able to solve all the 39 prob-
lems, while the splitting preconditioner with hybrid approach was able to solve 22 of the 39
since for degen2, ken 07, ken 11, ken 13, nug05, nug06, nug07, nug08, osa 07, osa 14, osa 30,
osa 60, pds 02, pds 06, pds 10, qap8 and scorpion problems it did not achieve convergence. We
highlight that the nug05, nug06, and nug07 problems converged to the wrong values, and we
indicate it by * in the table, the nug08, pds 10 and qap8 were finalized after running more than
12 hours and had not yet converged, these problems are indicated by ** in the table. In blue
we indicate the time and number of iterations obtained by the method with the splitting factor
preconditioner for these seventeen problems.

The new hybrid approach obtained a better time in 11 problems, and for the problems grow7,
grow15 and scsd8 the differences are significant.

We reduce the number of iterations in just one problem: czprob. However we can notice from the
bold values, that the same number of iterations was obtained for most problems, 18 in total.

Comparing with the paper [8], we note that in the hybrid approach the implementation referring
to the splitting factor preconditioner obtained an almost 13 times faster time for the czprob, for
the fit2d problem it was 50.8 times, for the ken 07 problem it was 36.8 times faster, for the pds 02
problem it was 161.4 times faster and for the qap8 problem 208 times faster. We also note that in
the paper [8], when using the splitting preconditioner in all iterations, only two problems did not
converge. Eight more problems than in paper [8] were also considered, they are ken 11, ken 13,
osa 07, osa 14, osa 30, osa 60, pds 06 and pds 10. This better performance achieved by the
hybrid approach, which we present in this work, was already expected, since the hybrid approach
in which we use the splitting preconditioner only in the final iterations has a better performance
already known in the literature [3]. As in [8] there was no change of preconditioners, we already

Trends Comput. Appl. Math., 23, N. 2 (2022)

i
i

“A10-1624-9308” — 2022/4/26 — 9:03 — page 358 — #10 i
i

i
i

i
i

358 SPLITTING FACTOR PRECONDITIONERS

Table 1: General problem data.

Problem Rows(m) Columns(n) nnz(A)
adlittle 56 138 424
agg2 516 758 4740
agg3 516 758 4756
blend 74 114 522
czprob 929 3562 10708
degen2 444 757 4201
fit1d 24 1049 13427
fit2d 25 10524 129042
grow7 140 301 2612
grow15 300 645 5620
israel 174 316 2443
kb2 43 68 313
ken 07 2426 3602 8404
ken 11 14694 21349 49058
ken 13 28632 42659 97246
nug05 210 225 1050
nug06 372 486 2232
nug07 602 931 4214
nug08 912 1632 7296
osa 07 1118 25067 144812
osa 14 2337 54797 317097
osa 30 4350 104374 604488
osa 60 10280 243246 1408073
pds 02 2953 7716 16571
pds 06 9881 29351 63220
pds 10 16558 49932 107605
qap8 912 1632 7296
recipe 91 204 687
sc50a 50 78 160
sc50b 50 78 148
sc105 105 163 340
sc205 205 317 665
scagr7 129 185 465
scorpion 388 466 1534
scsd1 77 760 2388
scsd6 147 1350 4316
scsd8 397 2750 8584
sctap1 300 660 1872
stocfor1 117 165 501

Trends Comput. Appl. Math., 23, N. 2 (2022)

i
i

“A10-1624-9308” — 2022/4/26 — 9:03 — page 359 — #11 i
i

i
i

i
i

P. A. KIKUCHI and A. R. L. OLIVEIRA 359

Table 2: Splitting factor and splitting preconditioners.

Splitting factor Splitting
Problem Time It Ch FO Time It Ch FO
adlittle 1.05 22 0 O 0.68 22 0 O
agg2 3.42 27 16 O 3.44 26 16 O
agg3 3.11 26 16 O 2.59 25 16 O
blend 1.16 20 0 O 0.64 20 0 O
czprob 9.90 58 23 O 5.91 61 23 O
degen2 4.52 21 6 O - - - NaN
fit1d 0.69 30 0 O 0.88 30 0 O
fit2d 5.04 33 0 O 5.33 33 0 O
grow7 0.45 16 10 O 1.92 16 10 O
grow15 1.32 18 11 O 8.71 18 11 O
israel 7.92 38 0 O 8.27 35 0 O
kb2 1.22 19 0 O 0.46 19 0 O
ken 07 2.90 16 11 O - - - NaN
ken 11 44.07 24 18 O - - - NaN
ken 13 180.55 31 25 O - - - NaN
nug05 0.45 11 4 O - - - *
nug06 1.39 12 4 O - - - *
nug07 5.99 16 4 O - - - *
nug08 12.46 14 4 O - - - **
osa 07 12.16 36 18 O - - - NaN
osa 14 31.79 42 19 O - - - NaN
osa 30 67.51 49 24 O - - - NaN
osa 60 230.23 74 31 O - - - NaN
pds 02 6.25 36 18 O - - - NaN
pds 06 91.32 57 29 O - - - NaN
pds 10 209.94 74 50 O - - - **
qap8 11.24 15 4 O - - - **
recipe 3.26 18 0 O 0.72 18 0 O
sc50a 0.29 15 1 O 0.42 15 1 O
sc50b 0.23 14 1 O 0.37 14 1 O
sc105 0.71 16 2 O 0.70 16 2 O
sc205 2.15 20 5 O 1.51 20 5 O
scagr7 1.27 23 2 O 0.60 23 2 O
scorpion 2.30 26 14 O - - - NaN
scsd1 0.45 17 7 O 0.87 17 7 O
scsd6 1.01 19 7 O 1.97 19 7 O
scsd8 2.85 18 7 O 5.67 18 7 O
sctap1 3.33 30 0 O 2.72 30 0 O
stocfor1 1.65 23 0 O 0.96 23 0 O

Trends Comput. Appl. Math., 23, N. 2 (2022)

i
i

“A10-1624-9308” — 2022/4/26 — 9:03 — page 360 — #12 i
i

i
i

i
i

360 SPLITTING FACTOR PRECONDITIONERS

know that initially the splitting preconditioner and the splitting factor preconditioner would not
obtain a desirable performance, since (3.4) would not be close to the identity matrix.

CONCLUSIONS

Given the splitting factor preconditioner previously presented in the literature, in this work we
seek to make its approach more robust, for that we used a hybrid approach in which in the first
iterations we used the incomplete Cholesky factorization preconditioner, switching in the last
iterations to the splitting factor preconditioner. As a comparison to this approach, we also used a
hybrid approach, initially considering the incomplete Cholesky factorization preconditioner and,
in the final iterations, the splitting preconditioner. For the experiments we used 39 linear pro-
gramming problems with the experiments being performed in Matlab. The new hybrid approach
using the splitting factor preconditioner solves all of them, and the method using the splitting
preconditioner in the final iterations solves 22 problems. Comparing the times obtained, the new
approach reaches a better time in 11 problems, and in general the differences are not large. It
reduces the number of iterations of the interior point method in one problem, and the same num-
ber of iterations was reached for the majority of the test problems. Comparing with the results
obtained in the paper without a hybrid approach, the splitting factor preconditioner achieved bet-
ter times, especially in 5 problems, whereas the splitting preconditioner converged only in 22
problems. Thus, comparing the hybrid approach with the non-hybrid one, we conclude that the
hybrid approach on in this paper is better, since both the splitting preconditioner and the splitting
factor preconditioner have better performance close to the solution. Regarding the comparison of
using the splitting and splitting factor preconditioners in the final iterations, we concluded that
the splitting factor preconditioner proved to be more efficient in the problems addressed in this
work, which are small.

Acknowledgments

This work has been supported by CNPq.

REFERENCES

[1] M.S. Bazaraa, J.J. Jarvis & H.D. Sherali. “Linear programming and network flows”. John Wiley &
Sons, Hoboken, NJ (2011).

[2] M. Benzi. Preconditioning techniques for large linear systems: a survey. Journal of computational
Physics, 182(2) (2002), 418–477.

[3] S. Bocanegra, F. Campos & A.R. Oliveira. Using a hybrid preconditioner for solving large-scale linear
systems arising from interior point methods. Computational Optimization and Applications, 36(2)
(2007), 149–164.

[4] L. Cesari. Sulla risoluzione dei sistemi di equazioni lineari per approssimazioni successive. Atti Accad.
Naz. Lincei. Rend. Cl. Sci. Fis. Mat. Nat., 25(6a) (1937), 422–428.

Trends Comput. Appl. Math., 23, N. 2 (2022)

i
i

“A10-1624-9308” — 2022/4/26 — 9:03 — page 361 — #13 i
i

i
i

i
i

P. A. KIKUCHI and A. R. L. OLIVEIRA 361

[5] G.H. Golub & C.F. Van Loan. “Matrix computations”. JHU Press, Baltimore, MD, 3 ed. (2012).

[6] M.T. Jones & P.E. Plassmann. An improved incomplete Cholesky factorization. ACM Transactions on
Mathematical Software (TOMS), 21(1) (1995), 5–17.

[7] N. Karmarkar. A new polynomial-time algorithm for linear programming. In “Proceedings of the
sixteenth annual ACM symposium on Theory of computing”. ACM, Washington D. C. (1984), p.
302–311.

[8] P.A. Kikuchi & A.R.L. Oliveira. New Preconditioners Applied to Linear Programming and the
Compressive Sensing Problems. SN Oper. Res. Forum, 1(36) (2020).

[9] S. Mehrotra. On the implementation of a primal-dual interior point method. SIAM Journal on
optimization, 2(4) (1992), 575–601.

[10] J. Meijerink & H.A. Van Der Vorst. An iterative solution method for linear systems of which the
coefficient matrix is a symmetric M-matrix. Mathematics of computation, 31(137) (1977), 148–162.

[11] A.R. Oliveira & D.C. Sorensen. A new class of preconditioners for large-scale linear systems from
interior point methods for linear programming. Linear Algebra and its applications, 394 (2005), 1–24.

[12] M.A.G. Ruggiero & V.L.d.R. Lopes. “Cálculo numérico”. Makron Books do Brasil, São Paulo, SP
(1997).

[13] Y. Saad & H.A. Van Der Vorst. Iterative solution of linear systems in the 20th century. Journal of
Computational and Applied Mathematics, 123(1) (2000), 1–33.

[14] L.N. Trefethen & D. BAU III. “Numerical linear algebra”, volume 50. Siam, Philadelphia, PA (1997).

[15] S.J. Wright. “Primal-dual interior-point methods”, volume 54. Society for Industrial and Applied
Mathematics, Philadelphia, PA (1987).

[16] S.J. Wright. “Primal-dual interior-point methods”. SIAM, Philadelphia, PA (1997).

Trends Comput. Appl. Math., 23, N. 2 (2022)

