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ABSTRACT. Within metal constructions there are structures made up of parallel members called legs,
connected to each other by diagonals. Some of these structures, with a triangular cross section, turn out to
be the guyed masts used in the communications industry, but also columns and beams used in metal struc-
tures. In the present work, the equations that allow obtaining the equations of the elastic of a spatial lattice
of triangular cross section are developed, in which the legs are joined together by zig-zag diagonals. To do
this, we start from an energy proposal in which the differential equations of equilibrium and the boundary
conditions of the proposed problem are determined. Finally, examples are presented where results are ob-
tained with the equations developed, and they are compared with the results obtained from the application
of the expressions given in CIRSOC 303 Recommendation (1996) and from finite element models.

Keywords: spatial lattice, static, strain energy, differential equations.

1 INTRODUCTION

Within metallic constructions there are various structures made up of parallel members called
legs, connected to each other by diagonals. Some of these structures, with a triangular cross
section, turn out to be the guyed masts used in the communications industry, but this typology is
also frequently used to constitute columns and beams in various metallic structures.

These structures have a significant number of elements (legs and diagonals), so it is common
in the design to use equivalent models that arise from replacing the lattice with an equivalent
beam-column type formulation, resulting in a lower cost at the time of the analysis [8,9]. For the
determination of this formulation, there are approaches based on the analysis of flexibility [3,7],
as well as others based on energy issues such as the one carried out by Guzmán et al. [5]. In this
last approach, the differential equations and the boundary conditions that govern the mechanical
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36 ELASTIC OF A SPATIAL LATTICE

behavior of a spatial lattice of triangular cross section were obtained, with diagonals arranged
in a zig-zag pattern. But this approach has also allowed the development of another alternative
form of representation of lattices, both triangular and rectangular cross-section, from obtaining
the equivalent properties necessary for modeling the problem as beam-column [4, 6].

In the present work, and making use of what was developed in [5], the equations are obtained
that allow to directly determine the equations of the elastic of the analyzed lattice. Finally, ex-
amples are presented where results are obtained with the proposed equations, and they are com-
pared with the results obtained from the application of the expressions given in the CIRSOC 303
recommendation [2] and from finite element models, thus allowing conclusions to be drawn.

2 SPATIAL LATTICE ANALYZED

The analyzed spatial lattice of total height L (Figure 1), presents a triangular cross section of sides
e and constituted by three continuous legs joined together by three planes of equal diagonals and
articulated at their ends, following a zig-zag pattern.

The section of each leg is Al and that of each diagonal is Ad . The moment of inertia of the legs
with respect to each of the main directions is Jly and Jlz, while the length of each diagonal is Ld .
∆ is the separation or step between them. The material that is part of each element is elastic and
linear, with a modulus of elasticity E.

Starting from the energetic approach, the sum of the energy developed in each of the elements
that make up the lattice is initially determined, and then accepting the hypothesis that the diago-
nals are sufficiently numerous, the summations are approximated by classical Cauchy-Riemann
integrals thus allowing the passage from the discrete domain to the continuous domain.

In this way, energy functionals are available that allow obtaining the Lagrangian of the system,
and by applying the Hamilton principle to said functional, obtaining the differential equations
and the edge conditions that govern the mechanical behavior of the analyzed lattice, thus giving
rise to to a continuous model of representation.

These differential equations constitute a linear system of nine equations in terms of the spatial
x and temporal variables t. In reference [5] the development of the afore mentioned approach is
presented. Next, the differential system and and boundary conditions that governs the behavior
of the continuous model is rewritten, and that for the present case of the elastic model, only
considers the spatial variable x.

Trends Comput. Appl. Math., 24, N. 1 (2023)
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Figure 1: Lattice analyzed. a) Elevation. b) Cross section.
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The coefficients Ki, ηm and δm, with i = u,v,w and with m =1,2,3 represents:
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d

(2.3)
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3 ELASTIC EQUATIONS

From the continuous representation model indicated above, the equations are obtained that al-
low determining, in this case, the elastic of a simply supported lattice subject to a uniformly
distributed load (qz/3) on each beam, and applied in the direction of w (Figure 2).
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Figure 2: Spatial lattice simply supported and subjected to a distributed load.

It should be noted that in the analysis of the elastic of composite parts, the local inertia of each
part (Jl) and in each main direction is significantly lower than the global inertia of the section (J).
This situation, which is very frequent in practice, makes it possible to set aside in the differential
system the contribution of v′′′′i (x) and w′′′′

i (x) (i = a,b,c), terms that energetically they come from
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the bending of each leg of the lattice. In this case the global moment of inertia of the section
according to Steiner, results:

Jy = 3Jly +2Al
( e

2

)2

Jz = 3Jlz +2Al
( e

2

)2
(3.1)

Assuming the simplification indicated above, the global inertias are rewritten as:

Jy = Jz = Al
e2

2 (3.2)

The natural and kinematic boundary conditions of the analyzed example result:
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Therefore, solving the system of governing differential equations, we obtain the elasticity of the
problem in the direction of the load, deflection (f) and maximum sectional rotation (θ ):

f(L/2) =− 5
384

qzL4

EJz
− 1

6
qzL3

dL2

EAde2∆

θ(L) =
1
24
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3
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dL
EAde2∆

(3.4)

Now defining ϕ as the parameter that takes into account the shear deformation:

ϕ =
12AlL3

d
Ad∆L2 (3.5)

deflection and rotation can be rewritten as:

f(L/2) =− 5
384

qzL4

EJz

(
1+ 8

15 ϕ

)
θ(L) =

1
24

qzL3

EJz

(
1+ 2

3 ϕ

) (3.6)

When comparing these results with those given by the classical beam theory (Euler-Bernoulli)
[1], substantial differences are observed. The latter is due to the fact that this theory does not
consider shear deformations.

In the hypothetical case in which Ad → ∞, it will turn out that ϕ → 0, with which the expressions
obtained coincide with those of the classical theory.
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Regarding the expression given by the CIRSOC 303 Recommendation (adjusted to the nomen-
clature of this work) and for the determination of the deflection in the direction of w, it
results:

f(L/2)CIRSOC
=− 5

384
qzL4

EJz

(
1+ 9.6

16 ϕ

)
(3.7)

When comparing equations 9 and 11, a difference between them is observed in what has been
defined as the deflection factor δ , that is, in the term:

δ = (1+Kϕ) (3.8)

where K represents the constant that depends on the boundary and load conditions.

This difference, indicated for the case studied, varies approximately in the order of 1 to 4% as
the shear factor ϕ increases from 0.1 to 1.0.

4 RESULTS

Figure 3 shows a comparison of the maximum deflection factors (δ ) obtained with the expression
given by the CIRSOC 303 Recommendation (C), with the developed equation (E), and with the
results obtained from a finite element model (EF).
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Figure 3: Comparison of deflection factor results obtained for the cases analyzed.
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These results shown correspond to the cases of: i) reticulated simply supported with distributed
load (case A); ii) cantilever lattice with point load (case B); iii) cantilever lattice with distributed
load (case C). In the cases analyzed, the deflection factor δ was obtained for different values of
the shear factor ϕ .

With a development similar to that indicated above, Table 1 presents the formulations obtained
from the continuous model and the expressions given in CIRSOC 303, for the three cases ana-
lyzed (A, B and C), and the proposed equation for a fourth case corresponding to a fixed-fixed
lattice with distributed load (case D). It should be noted that for the latter case, the CIRSOC
Recommendation 303 does not present any expression.

Table 1: Expressions for the determination of deflection in the cases analyzed.

Case BC Load Proposed equation Expression CIRSOC 303

A simply
supported

uniformly
distributed (q)

5
384

qzL4

EJz

(
1+ 8

15 ϕ

)
5

384
qzL4

EJz

(
1+ 9.6

16 ϕ

)

B cantilever Concentrated at
the free end (P)

1
3

PL3

EJz

(
1+ 1

6 ϕ

)
1
3

PL3

EJz

(
1+ 3

16 ϕ

)

C cantilever uniformly
distributed (q)

1
8

qzL4

EJz

(
1+ 2

9 ϕ

)
1
8

qzL4

EJz

(
1+ 3.1

16 ϕ

)

D fixed-
fixed

uniformly
distributed (q)

1
384

qzL4

EJz

(
1+ 8

3 ϕ

)
-

5 CONCLUSIONS

In the present work, the equations were obtained to determine the elastic of a spatial lattice
of triangular cross section, with diagonals arranged in a zig-zag pattern. Said equations were
obtained from a continuous representation model, where shear deformations are incorporated
into the formulation. The results obtained when applying the proposed equations coincide with
those obtained in the finite element models, but present differences with the classical beam theory
since the latter does not consider shear deformation. On the other hand, when comparing the
results with those obtained from applying the expressions given by the CIRSOC 303, they turned
out to be significantly lower, which raises the possibility of proposing adjustments to the constant
that accompanies the shear factor in those expressions.
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A. M. GUZMÁN, G. A. GONZÁLEZ DEL SOLAR and V. A. ROLDAN 43

Acknowledgments
To the Secretary of Science and Technology of the Universidad Tecnológica Nacional for
financing the project UTI6619TC.

REFERENCES

[1] O. Belluzzi. “Ciencia de la construcción I”. Aguilera, España (1973).

[2] CIRSOC-303. “Estructuras livianas de acero”. INTI, Argentina (1996).

[3] C. Filipich & E. Bambill. Frecuencias naturales de piezas empresilladas vı́a serie de potencias.
Mecánica Computacional, 22 (2003).

[4] A. Guzmán & V. Roldan. Equivalent properties for analysis as beam-column of spatial lattices of
rectangular cross-section. Advanced Steel Construction, 17 (2021), 95–103.

[5] A. Guzmán, M. Rosales & C. Filipich. Natural vibrations and buckling of a spatial lattice structure
using a continuous model derived from an energy approach. International Journal of Steel Structures,
17 (2017), 1–14.

[6] A. Guzmán, M. Rosales & C. Filipich. Continuous one-dimensional model of a spatial lattice.
Deformation, vibration and buckling problems. Engineering Structures, 182 (2019), 290–300.

[7] N.B. Kahla. Equivalent beam-column analysis of guyed towers. Computers and Structures, 55 (1995),
631–645.

[8] M. Madagula, Y. Wahba & G. Monforton. Dynamic response of guyed mast. Engineering Structures,
20 (1998), 1097–1101.

[9] Y. Wahba, M. Madagula & G. Monforton. Evaluation of non-linear analisis of guyed antenna towers.
Computers and Structures, 68 (1998), 207–212.

Trends Comput. Appl. Math., 24, N. 1 (2023)


