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Sociedade Brasileira de Matemática Aplicada e Computacional
Online version ISSN 2676-0029
www.scielo.br/tcam
doi: 10.5540/tcam.2022.024.01.00045

Error Estimates for Doubly-Generalized Tikhonov-Phillips Regularization
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ABSTRACT. In this work, error estimates are presented for the case in which the regularized solution is
obtained by minimizing doubly-generalized Tikhonov-Phillips functionals. The first result is based mainly
on an assumption given by a source condition. It is proved that it is possible to replace this assumption by a
variational inequality, obtaining analogous result of the error estimate. Finally, relationships are established
between the optimality condition associated with the problem, the source condition and the variational
inequality. On the other hand, it is known that, in certain cases, the use of two or more penalizing terms
is useful. For this reason, generalizations of the results of error estimates are presented for cases in which
the regularized solution is a minimizer of doubly-generalized Tikhonov-Phillips functionals with multiple
penalizers.

Keywords: inverse problems, Tikhonov-Phillips, error estimate, source condition, variational inequality.

1 INTRODUCTION

In a quite general framework, an inverse problem can be defined as the need of determining x in
an equation of the form

T x = y, (1.1)

where T : X → Y is a bounded linear operator between two Banach spaces of infinite dimen-
sion (in the classic theory, X and Y are Hilbert spaces) and y is the data, supposed to be known,
perhaps with a certain degree of error. Frequently, inverse problems are ill-posed in the sense of
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Hadamard (i.e., the solution does not exists, it is not unique or it does not depend continuously on
the data) and thus arises the need to apply a regularization method. Associated with this method,
there is a parameter called the “regularization parameter” and its choice is essential to achieve
an adequate approximation of the solution of the inverse problem. There are several parameter
choice rules that allow determining its value. The so-called “a-priori” are those that depend only
on the noise level of the problem while the “a-posteriori” are those that depend on both the noise
level and the data. Finally, there is another type of rules called “heuristics” and they are those that
only depend on the noise level through the data. Among them, we can mention the “generalized
cross-validation method” introduced in 1979 by G. H. Golub, M. T. Heath and G. Wahba [8],
“the L-curve criterion” proposed in 1992 by P. C. Hansen [9] and the rule proposed by K. Ito, B.
Jin and J. Zou in 2011 [13], whose construction is based on the stochastic approach to solving an
inverse problem. It is important to mention that this type of rule is very useful in those problems
where the exact noise level is unknown and only the data is available.

Although there is a wide variety of regularization methods, probably the best known and most
commonly and widely used is the Tikhonov–Phillips regularization method, which was originally
proposed by D. L. Phillips and A. N. Tikhonov in 1962 and 1963, respectively [16, 19, 20].
Under the classic version of this method (with fidelity term and penalizer, both quadratic) and
its generalized version (with quadratic fidelity term and generalized penalizer) it is possible to
prove the convergence of the regularized solutions to a minimum penalizing solution, in the case
in which the regularization parameter is chosen through an a-priori or a-posteriori rule [3, 5]. It
is possible to generalize these convergence results for the doubly-generalized Tikhonov-Phillips
regularization method (that is, with generalized fidelity and penalizing terms) for these types of
rules [6,11]. A result due to A. B. Bakushinskii [1] shows that a regularization method cannot be
convergent when the associated parameter choice rule depends only on the data of the ill-posed
inverse problem. But this does not indicate that the method cannot perform well for small noise
levels. For this reason, given that convergence results cannot be obtained, various authors have
presented error estimates, that is, bounds for the error between the solution of the problem and
the regularized solution when the regularization parameter is chosen using a heuristic rule for a
fixed noise level [2, 11, 18].

We propose here to study the doubly-generalized Tikhonov-Phillips regularization method that
consists in approximating the solution of the problem (1.1) by a minimizer of the functional,
called “TPGG-p functional”, given by

J p
φ̃ ,ψ,η

(x) .
=

1
p

φ̃(T x,y)p +η ψ(x), (1.2)

where p ≥ 1, φ̃ : Y ×Y → [0,+∞), ψ : X → [0,+∞) is a convex functional and η > 0 is the
regularization parameter. In particular, if φ̃(T x,y) = ∥T x−y∥, the resulting functional is called
“TPG-p functional” and is given by

J p
ψ,η(x)

.
=

1
p
∥T x− y∥p +η ψ(x), (1.3)

Trends Comput. Appl. Math., 24, N. 1 (2023)
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where p ≥ 1 and ψ : X → [0,+∞) is a convex functional. This work presents error estimates
that we have proved for the case in which the regularized solution is obtained by minimizing
the TPGG-p functionals given by (1.2). The first estimates are based mainly on an assump-
tion given by a source condition which, as is known, imposes certain smoothness conditions
on the minimum penalizing solution. These estimates are particularized for the case in which
φ̃(T x,y) = ∥T x− y∥ and p = 2, leaving evidence that are equivalent to that proposed by K. Ito
and B. Jin in [11].

As it is usual, we use the Bregman distance to estimate the error. This distance is a natural way
to measure the deviation of elements in a Banach space with respect to a convex functional and
it has a term that will be in our interest to be able to bounded. For this purpose, the so-called
“variational inequalities” will be used to bound this term of interest and obtain error estimates.
We will see here that it is possible to replace the source condition assumption used in the first
error estimates by a variational inequality, obtaining similar results from that estimates. Finally,
relationships are established between the optimality condition associated with the problem, the
source condition and the variational inequality.

It is well known that an adequate choice of the penalizing term, based on the “a-priori” knowl-
edge of certain type of information about the exact solution, will result in regularized solutions
which appropriately reflect those characteristics. In recent years, there has been a growing in-
terest in the multi-parameter Tikhonov regularization method that uses multiple constraints as
a means of improving the quality of inversion. The multi-parameter regularization adds mul-
tiple different penalties which exhibit multi-scale features, while the single-parameter regular-
ization uses a unique penalty which may result in a regularized solution that does not preserve
certain features of the original solution. The use of multi-parameter regularization for solving
ill-posed problems naturally matches with the multi-resolution analysis framework which has
become a standard method to analyze the frequency information of images on different resolu-
tions [12, 14, 15, 21]. For this reason, we present generalizations of the error estimates results
obtained for the functionals given in (1.2) for the case in which the regularized solution is a
minimizer of doubly-generalized Tikhonov-Phillips functional with multiple penalizers given by

J p
φ̃ ,ψ⃗ ,⃗η

(x) .
=

1
p

φ̃(T x,y)p + η⃗ · ψ⃗(x), (1.4)

where p ≥ 1, φ̃ : Y ×Y → [0,+∞), ψ⃗
.
= (ψ1, . . . ,ψn) : X →Rn with ψi : X → [0,+∞) convex

functionals for all i = 1, . . . ,n and η⃗ = (η1, . . . ,ηn) ∈ Rn such that ηi > 0, for all i = 1, . . . ,n.

2 PRELIMINARES

As it was previously mentioned, to estimate the a-posteriori error, the Bregman distance will be
used and, to present its definition, it is necessary to introduce the concepts of subgradient and
subdifferential of a convex functional [18], which are presented below.

Definition 2.1. Let X be a Banach space, X ∗ the dual space of X and ψ : X → R∪{∞} a
convex functional. Then, x∗ ∈X ∗ is a subgradient of ψ in x if ψ(z)≥ ψ(x)+[x∗,z−x], ∀z ∈X ,

Trends Comput. Appl. Math., 24, N. 1 (2023)
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where [x∗,x] corresponds to the functional x∗ evaluated in x, i.e [x∗,x] .
= x∗(x). The set ∂ψ(x) of

all subgradients of ψ in x is called subdifferential of ψ in x.

It is important to mention here that the subgradient is a generalization of the classical concept of
derivative for the case of convex functionals [22].

Definition 2.2. Let X be a Banach space, ψ : X → R∪{∞} a convex functional, x ∈ X and
ξ ∈ ∂ψ(x). The Bregman distance in x with respect to ξ and ψ is defined as

dψ

ξ
(z,x) .

= ψ(z)−ψ(x)− [ξ ,z− x], ∀z ∈ X .

It is immediate to see that dψ

ξ
(x,x) = 0 and the convexity of the functional ψ implies that

dψ

ξ
(z,x) ≥ 0, for all z ∈ X . Also, it is easy to prove that if X is a Hilbert space, the Breg-

man distance in an element x coincides with ∥x− z∥2, for all z ∈ X , when the functional ψ is
chosen as the square of the norm in X . In this way, the Bregman distance extends the concept
of norm.

Now, we introduce the concept of duality mapping that will be relevant for its close relationship
with the subdifferential of a power of a norm [17, 18]. To define this mapping, it is necessary to
introduce the concept of a “gauge function” that consists of a continuous and strictly increasing
function f : [0,+∞)→ [0,+∞) that verifies f (0) = 0 and lim

t→∞
f (t) = ∞. Furthermore, it is nec-

essary to define the set denoted by 2X ∗
consisting of all subsets of the dual space of X , that is,

2X ∗ .
= {E : E ⊂ X ∗}.

Definition 2.3. Let X be a Banach space. The duality mapping of X with respect to the gauge
function f is the (set-valued) mapping J : X → 2X ∗

defined by

J(x) = {x∗ ∈ X ∗ : [x∗,x] = ∥x∗∥∥x∥, ∥x∗∥= f (∥x∥)} .

The following proposition presents the duality mapping with respect to the gauge function f (t) =
t p−1 with p > 1, for the case of Hilbert spaces.

Proposition 2.1. Let X be a Hilbert space and f (t) = t p−1 with p > 1. The duality mapping J
of X with respect to f is given by J(x) = ∥x∥p−2 x.

The next result, called Asplund Theorem, relates the subdifferential of the primitive of a gauge
function (which is convex) and the duality mapping with respect to that function.

Theorem 2.1. Let X be a Banach space and f a gauge function. If F(t) .
=

∫ t

0
f (s)ds then the

duality mapping of X with respect to f is given by

J(x) = ∂F(∥x∥), x ∈ X .

The following corollary is useful to obtain the subdifferential of the convex functional
1
p
∥x∥p

with p > 1, that is associated with the fidelity term considered in (1.3).

Trends Comput. Appl. Math., 24, N. 1 (2023)
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Corollary 2.1. If X is a Banach space and f (t) = t p−1 with p > 1, then the duality mapping J

of X with respect to f is given by J(x) = ∂

(
1
p
∥x∥p

)
.

It is well known that a minimizer of a differentiable and convex function verifies the optimality
condition, that is, the derivative of that function vanishes in that minimizer. Similarly, a minimizer
z of a convex functional J defined on a Banach space satisfies the optimality condition given
by 0 ∈ ∂J (z), as it is presented in the following result. Furthermore, the optimality condition
implies the existence of a minimizer.

Theorem 2.2. Let X be a Banach space, J : X →R∪{∞} a convex functional and z∈D(J )

with J (z)< ∞. Then, J (z) = min
x∈X

J (x) if and only if 0 ∈ ∂J (z).

3 PRINCIPAL RESULTS

3.1 One penalizer

The following result presents the first error estimation that we have obtained for the case in which
the regularized solution is a minimizer of a TPGG-p functional. As will be seen, it is possible to
particularize this estimate for the case of TPG-p functionals. More precisely, it will be seen that
the estimate obtained for the case of TPG-2 functionals is equivalent to that proposed by K. Ito
and B. Jin in [11].

Theorem 3.3. Let X and Y be Banach spaces, T ∈ L (X ,Y ), ψ : X → [0,+∞), φ̃ : Y ×
Y → [0,+∞), x̃ the exact solution of (1.1) and yδ ∈ Y such that φ̃(y,yδ )≤ δ and φ̃(yδ ,y)≤ δ .
Suppose that there exists w ∈Y ∗ such that ξ

.
=T #w ∈ ∂ψ(x̃) and that the functional φ̃ satisfies

the following hypotheses:

1. φ̃(y1,y3)≤ φ̃(y1,y2)+ φ̃(y2,y3), for all y1,y2,y3 ∈ Y ;

2. there exists C > 0 such that ∥y1 − y2∥ ≤C φ̃(y2,y1), ∀y1, y2 ∈ R(T ).

Then, for each minimizer xδ
η of the functional J p

φ̃ ,ψ,η
given in (1.2) for data yδ it follows that

• if p > 1 and q is the conjugate of p then

dψ

ξ
(xδ

η , x̃)≤
δ p

p +η δ ∥w∥C+ 1
q (η ∥w∥C)q

η
;

• if p = 1 and η ∥w∥C ≤ 1 then

dψ

ξ
(xδ

η , x̃)≤ δ
1+η ∥w∥C

η
.

Proof. Since xδ
η is a minimizer of the functional J p

φ̃ ,ψ,η
for data yδ , it follows that

1
p

φ̃(T xδ
η ,y

δ )p +η ψ(xδ
η)≤

1
p

φ̃(T x̃,yδ )p +η ψ(x̃),

Trends Comput. Appl. Math., 24, N. 1 (2023)
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and, in consequence,
1
p

φ̃(T xδ
η ,y

δ )p ≤ 1
p

φ̃(T x̃,yδ )p +η

(
ψ(x̃)−ψ(xδ

η)
)

.

Then,

1
p

φ̃(T xδ
η ,y

δ )p +η dψ

ξ
(xδ

η , x̃)≤
1
p

φ̃(T x̃,yδ )p +η

(
ψ(x̃)−ψ(xδ

η)+dψ

ξ
(xδ

η , x̃)
)

=
1
p

φ̃(T x̃,yδ )p +η

[
T #w, x̃− xδ

η

]
=

1
p

φ̃(T x̃,yδ )p +η

[
w,T x̃−T xδ

η

]
, (3.1)

where the last two equalities follow from the source condition and the definition of the dual
adjoint operator, respectively. Now, since φ̃(y,yδ )≤ δ and φ̃(yδ ,y)≤ δ , it follows that

1
p

φ̃(T xδ
η ,y

δ )p +η dψ

ξ
(xδ

η , x̃)

≤ δ p

p
+η [w,T x̃−T xδ

η ] by (3.1) and T x̃ = y

≤ δ p

p
+η ∥w∥∥T x̃−T xδ

η∥

≤ δ p

p
+η ∥w∥C φ̃(T xδ

η ,y
δ )+η ∥w∥C φ̃(yδ ,y) by hypotheses 1, 2 and T x̃ = y

≤ δ p

p
+η ∥w∥C φ̃(T xδ

η ,y
δ )+η ∥w∥C δ .

Finally,

1
p

φ̃(T xδ
η ,y

δ )p −η ∥w∥C φ̃(T xδ
η ,y

δ )+η dψ

ξ
(xδ

η , x̃)≤
δ p

p
+η ∥w∥C δ . (3.2)

• If p > 1, it immediately follows from Young’s inequality that

η ∥w∥C φ̃(T xδ
η ,y

δ )≤ 1
p

φ̃(T xδ
η ,y

δ )p +
1
q
(η ∥w∥C)q,

which implies that

η dψ

ξ
(xδ

η , x̃)−
1
q
(η ∥w∥C)q ≤ 1

p
φ̃(T xδ

η ,y
δ )p −η ∥w∥C φ̃(T xδ

η ,y
δ )+η dψ

ξ
(xδ

η , x̃)

≤ δ p

p
+η ∥w∥C δ ,

where the last inequality follows from (3.2). Thus,

dψ

ξ
(xδ

η , x̃)≤
δ p

p +η δ ∥w∥C+ 1
q (η ∥w∥C)q

η
.

• If p = 1, by (3.2) it follows that (1−η ∥w∥C) φ̃(T xδ
η ,y

δ )+η dψ

ξ
(xδ

η , x̃)≤ δ +η ∥w∥C δ ,
and by hypothesis 1−η ∥w∥C ≥ 0, finally, it turns out that

dψ

ξ
(xδ

η , x̃)≤ δ
1+η ∥w∥C

η
.

Trends Comput. Appl. Math., 24, N. 1 (2023)



i
i

“A5-1613-9821” — 2023/2/28 — 18:28 — page 51 — #7 i
i

i
i

i
i
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□

Given that every norm satisfies the triangular inequality and considering C = 1, it follows im-
mediately that the hypotheses 1 and 2 of Theorem 3.3 are verified when φ̃ corresponds to the

norm in Y . In this way, if the fidelity term is
1
p
∥T x− y∥p, with p ≥ 1, from Theorem 3.3 error

estimates are obtained for the case of TPG-p functionals. In particular, for p = 2 (corresponding
to the classic fidelity term) it turns out that

dψ

ξ
(xδ

η , x̃)≤
δ 2

2 +ηδ∥w∥+ 1
2 (η∥w∥)2

η
=

1
2

(
δ
√

η
+
√

η∥w∥
)2

,

which coincides with that of K. Ito and B. Jin in [11]. It is then possible to conclude that the
Theorem 3.3 consists of a generalization of the estimation result presented by these authors.

On the other hand, it is appropriate to mention that the inequality (3.1), which constitutes a
first error estimate, was obtained by M. Benning and M. Burger in 2011 under slightly different
hypotheses about φ̃ and ψ , using the symmetric Bregman distance [2].

Finally, it is important to observe that the Theorem 3.3 would allow obtaining orders of conver-
gence for the case in which the regularization parameter is chosen with an a-priori or a-posteriori
rule. However, if one is interested in obtaining estimates of the error for the case of heuristic
rules, one can, from the inequality (3.2), obtain such an estimate as follows

dψ

ξ
(xδ

η , x̃)≤
δ p

pη
+∥w∥C δ − 1

p
φ̃(T xδ

η ,y
δ )p

η
+∥w∥C φ̃(T xδ

η ,y
δ ). (3.3)

From the proof of the Theorem 3.3, it is easy to see that the error estimate given by the inequality
(3.3) is less than or equal to the estimate obtain in this theorem.

Next, it is proved that, in the context of Hilbert spaces and under certain hypotheses, the optimal-

ity condition for the functional J 2
ψ,η , with ψ(x) .

=
1
2
∥x∥2 (given by the existence of minimizers)

implies the source condition present in the statement of Theorem 3.3. It should be noted here that,
in this context, the dual adjoint operator T # coincides with the adjoint operator T ∗ : Y → X

of T .

Proposition 3.2. Let X and Y be Hilbert spaces, ψ(x) .
=

1
2
∥x∥2 and x̃ the exact solution of

(1.1). Suppose that {xη} is a sequence of minimizers of the functional J 2
ψ,η such that xη

ω−→ x̃

when η → 0+ and there exists w ∈ Y such that −
T xη − y

η

ω−→ w. Then, T ∗w ∈ ∂ψ(x̃), where

T ∗ : Y → X is the adjoint operator of T .

Proof. Since xη is a minimizer of the functional J 2
ψ,η , from Theorem 2.2 it turns out that

0 ∈ ∂

(
1
2
∥T ·−y∥2 +η

1
2
∥ · ∥2

)
(xη).

Trends Comput. Appl. Math., 24, N. 1 (2023)
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Then, by property of the sum, product by a scalar, translation and composition of the subgradient
[22] it follows that

∂

(
1
2
∥T ·−y∥2 +η

1
2
∥ · ∥2

)
(xη) = ∂

(
1
2
∥T ·−y∥2

)
(xη)+η ∂

(
1
2
∥ · ∥2

)
(xη)

= T ∗
∂

(
1
2
∥ ·−y∥2

)
(T xη)+η ∂

(
1
2
∥ · ∥2

)
(xη)

= T ∗
∂

(
1
2
∥ · ∥2

)
(T xη − y)+η ∂

(
1
2
∥ · ∥2

)
(xη).

Thus, 0 ∈ T ∗ (∂
1
2∥ · ∥

2
)
(T xη − y)+η ∂

( 1
2∥ · ∥

2
)
(xη) and the functional 0 can be decomposed

as 0 = fη +gη , where fη ∈ T ∗∂
( 1

2∥ · ∥
2
)
(T xη − y) and gη ∈ η ∂

( 1
2∥ · ∥

2
)
(xη). Since X and

Y are Hilbert spaces, from Proposition 2.1 and Corollary 2.1, it immediately follows that fη =

T ∗ (T xη − y) and gη = η xη . Since gη =− fη it turns out that

xη =
−T ∗ (T xη − y)

η
.

and then, by hypothesis, xη

ω−→ T ∗w. By uniqueness of the limit it is concluded that x̃ = T ∗w.
From Proposition 2.1 and Corollary 2.1 it follows that ∂ψ(x̃) = ∂

( 1
2∥ · ∥

2
)
(x̃) = {x̃}, and thus

T ∗w ∈ ∂ψ(x̃). □

Finally, the optimality condition associated with the functional TPGG-p with p > 1, and convex
and weakly lower semicontinuous penalizer imply the source condition present in the statement
of Theorem 3.3, as it is proved in the following proposition.

Proposition 3.3. Let X and Y be Banach spaces, ψ : X → [0,+∞) a convex and weakly lower
semicontinuous functional and x̃ the exact solution of (1.1). Suppose that {xη} is a sequence of
minimizers of the functional J p

φ ,ψ,η with p > 1 such that xη

ω−→ x̃ when η → 0+ and that the
following hypothesis is satisfied:

for each η > 0, there exists wη ∈ Y ∗ such that ∂

(
− 1

η

φ̃(T ·,y)p

p

)
(xη) = {wη}. (3.4)

If there exists w ∈ Y ∗ such that wη

ω−→ w, then T #w ∈ ∂ψ(x̃), where T # : Y ∗ → X ∗ is the
dual adjoint operator of T .

Proof. Since xη is a minimizer of the functional J p
φ̃ ,ψ,η

, from Theorem 2.2 it immediately

follows that 0 ∈ ∂

(
1
p

φ̃(T ·,y)p +η ψ(·)
)
(xη). Then, by property of the sum, product by a

scalar and composition of the subgradient [22] it follows that

0 ∈ T #
∂

(
1
p

φ̃(T ·,y)p
)
(xη)+η ∂ψ(xη),

and then, the functional 0 can be decomposed as 0 = fη +gη , with

fη ∈ T #
∂

(
1
p

φ̃(T ·,y)p
)
(xη) and gη ∈ η ∂ψ(xη).
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Now, by hypothesis, it is known that ∂

(
− 1

η

φ̃(T ·,y)p

p

)
(xη) = {wη} and thus −

fη

η
= T #wη .

Since gη =− fη , it follows that T #wη =
gη

η
∈ ∂ψ(xη). Analogously to the proof of Proposition

3.2, as a consequence of the weak lower semicontinuity of ψ and since wη

ω−→ w and xη

ω−→ x̃
as η → 0+, it is proved that T #w ∈ ∂ψ(x̃). □

It should be mentioned here that, under certain additional hypotheses, the assumption (3.4)

about the subdifferential of
1
p

φ̃(T ·,y)p with p > 1 is verified. For example, if φ̃ corre-

sponds to the norm in a Hilbert space, from Proposition 2.1 it follows that the subdifferential

∂

(
1
p

φ̃(T ·,y)p
)
(xη) has a single element. On the other hand, if φ̃ is Gateaux differentiable

then ∂ φ̃(x) =
{

∇φ̃(x)
}

[18].

Because the Bregman distance in x̃ ∈ X with respect to the convex functional ψ involves the
term [ξ ,x− x̃], where ξ ∈ ∂ψ(x̃) and x ∈ X , several authors propose the use of inequalities
containing this term, called variational inequalities, and it is proved that they are a powerful
tool to obtain convergence rates [7, 10, 17]. The first results of convergence rates for Tikhonov-
Phillips functional minimizers are based on assumptions of the smoothness of the solution with
respect to an operator (generally non-linear) defined in a Hilbert space [4] or Banach [3]. These
assumptions are expressed in terms of a source condition (generally associated with an equation).
However, numerical observations showed that, even when the assumptions of smoothness were
not verified, the convergence rate was not necessarily significantly affected. In 2007, B. Hofmann
et al. [10] took this observation into account and weakened these assumptions by replacing the
source condition with a variational inequality. We propose here to use inequalities of this type to
prove a result analogous to that of Theorem 3.3 and thus obtain error estimates under this new
approach. First, we will show the relationship between the source condition present in Theorem
3.3 and a variational inequality.

Proposition 3.4. Let X and Y be Banach spaces, T ∈ L (X ,Y ), ψ : X → [0,+∞), φ̃ : Y ×
Y → [0,+∞), x̃ the exact solution of (1.1) such that there exists w ∈Y ∗ with ξ

.
=T #w ∈ ∂ψ(x̃).

Suppose that the following hypothesis is satisfied:

there exists C > 0 such that ∥y1 − y2∥ ≤C φ̃(y2,y1), ∀y1, y2 ∈ R(T ). (3.5)

Then, there exists β ≥ 0 such that the following variational inequality holds:

[ξ , x̃− x]≤ β φ̃(T x,T x̃), ∀x ∈ X . (3.6)

Proof. It is easy to proved that for each x ∈ X , by hypotheses and by the definition of the dual
adjoint operator, it follows that

[ξ , x̃− x] = [T #w, x̃− x] = [w,T x̃−T x]≤ ∥w∥∥T x̃−T x∥ ≤ ∥w∥C φ̃(T x,T x̃),

whence inequality (3.6) is verified considering β
.
=C∥w∥. □
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In the Proposition 3.5, a result in some “reciprocal” sense to that given in the previous statement,
is presented. For this, the following result about the dual adjoint operator T # of T will be used
( [17], Lemma 8.21).

Lemma 3.1. Let X and Y be normed spaces, T ∈ L (X ,Y ) and x∗ ∈ X ∗. Then, x∗ ∈
Ran(T #) if and only if there exists C̃ > 0 such that |[x∗,x]| ≤ C̃∥T x∥, ∀x ∈ X .

Proposition 3.5. Let X and Y be Banach spaces, T ∈ L (X ,Y ), ψ : X → [0,+∞), φ̃ :
Y ×Y → [0,+∞), x̃ the exact solution of (1.1). Suppose that there exists β ≥ 0 and ξ ∈ ∂ψ(x̃)
such that [ξ , x̃− x]≤ β φ̃(T x,T x̃), ∀x ∈ X , and that the following hypothesis is satisfied:

there exists c > 0 such that c φ̃(y1,y2)≤ ∥y1 − y2∥, ∀y1, y2 ∈ R(T ). (3.7)

Then, there exists w ∈ Y ∗ such that ξ = T #w.

Proof. By hypotheses, it follows that

[ξ ,x] = [ξ , x̃− (x̃− x)]≤ β φ̃(T (x̃− x),T x̃)≤ β
1
c
∥T x∥,

for all x ∈ X . Then, by Lemma 3.1 we have that ξ ∈ Ran(T #), i.e., there exists w ∈ Y ∗ such
that ξ = T #w. □

In the particular case in which φ̃(T x,y) .
= ∥T x− y∥, the equivalence between the source con-

dition and the variational inequality (3.6) is obtained immediately from the Propositions 3.4 and
3.5. Indeed, the hypotheses (3.5) and (3.7) are verified considering c =C = 1.

The following theorem presents an analogous result of the Theorem 3.3 with a modification in its
hypotheses since error estimates are established using a variational inequality instead of a source
condition. By the Proposition 3.4, it is immediate to see that this new hypothesis is weaker than
those used in Theorem 3.3.

Theorem 3.4. Let X and Y be Banach spaces, T ∈ L (X ,Y ), ψ : X → [0,+∞), φ̃ : Y ×
Y → [0,+∞), x̃ the exact solution of (1.1) and yδ ∈ Y such that φ̃(y,yδ )≤ δ and φ̃(yδ ,y)≤ δ .
Suppose that the functional φ̃ satisfies the following hypotheses:

1. φ̃(y1,y3)≤ φ̃(y1,y2)+ φ̃(y2,y3), for all y1,y2,y3 ∈ Y ;

2. there exist β ∈ [0,∞) and ξ ∈ ∂ψ(x̃) such that [ξ , x̃− x]≤ β φ̃(T x,T x̃), for all x ∈ X .

Then, for each minimizer xδ
η of the functional J p

φ̃ ,ψ,η
given in (1.2) for data yδ it follows that

• if p > 1 and q is the conjugate of p, then

dψ

ξ
(xδ

η , x̃)≤
δ p

p +η δ β + 1
q (η β )q

η
;
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• if p = 1 and η β ≤ 1, then

dψ

ξ
(xδ

η , x̃)≤ δ
1+η β

η
.

Proof. Analogously to the proof of Theorem 3.3, since xδ
η is a minimizer of the functional

J p
φ̃ ,ψ,η

for data yδ and φ̃(y,yδ )≤ δ , it immediately follows that

1
p

φ̃(T xδ
η ,y

δ )p ≤ δ p

p
+η

(
ψ(x̃)−ψ(xδ

η)
)
.

Then,

1
p

φ̃(T xδ
η ,y

δ )p +η dψ

ξ
(xδ

η , x̃)

≤ δ p

p
+η

(
ψ(x̃)−ψ(xδ

η)+dψ

ξ
(xδ

η , x̃)
)

=
δ p

p
+η [ξ , x̃− xδ

η ]

≤ δ p

p
+η β φ̃(T xδ

η ,y
δ )+η β φ̃(yδ ,y) by hypotheses 1, 2 and T x̃ = y

≤ δ p

p
+η β φ̃(T xδ

η ,y
δ )+η β δ . since φ̃(yδ ,y)≤ δ

Finally,

1
p

φ̃(T xδ
η ,y

δ )p −η β φ̃(T xδ
η ,y

δ )+η dψ

ξ
(xδ

η , x̃)≤
δ p

p
+η β δ ,

and the proof follows analogously to that of Theorem 3.3 with β instead of C∥w∥ in (3.2). □

From the proof of the Proposition 3.4 it follows that β = C∥w∥ so that the error estimates
obtained in the Theorems 3.3 and 3.4 coincide.

It is appropriate to mention here that if we consider the fidelity term given by
1
p
∥T x− y∥p, that

is φ̃(T x,y) = ∥T x− y∥, the hypothesis 1 of Theorem 3.4 is satisfied as a consequence of the
triangular inequality of the norm. In this way, from the Theorem 3.4, it is possible to obtain a
result that establishes an estimate of the error between the exact solution of (1.1) and a regularized
solution obtained by minimizing TPG-p functionals (in this case, β = ∥w∥ since C = 1).

3.2 Multiple penalizers

As previously mentioned, the simultaneous use of two or more penalizers of different nature
will, in some way, allow the capturing of different characteristics on the exact solution. This is
very usefull, for instance, in image restoration problems in which it is known “a-priori” that the
original image is “blocky”, i.e. it possesses both regions of high regularity and regions with sharp

Trends Comput. Appl. Math., 24, N. 1 (2023)
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discontinuities. Thus, generalizations of the Theorems 3.3 and 3.4 are presented for the case in
which the regularized solution is obtained by minimizing the functional given in (1.4).

First, the following theorem presents an error estimate that constitutes a generalization of the
Theorem 3.3.

Theorem 3.5. Let X and Y be Banach spaces, T ∈ L (X ,Y ), φ̃ : Y ×Y → [0,+∞), ψi :
X → [0,+∞) convex functionals for all i = 1, . . . ,n, ψη⃗ : X → R given by ψη⃗(x)

.
= η⃗ · ψ⃗(x),

where ψ⃗(x) .
= (ψ1(x), . . . ,ψn(x)), η⃗ = (η1, . . . ,ηn), x̃ the exact solution of (1.1) and yδ ∈Y such

that φ̃(y,yδ ) ≤ δ and φ̃(yδ ,y) ≤ δ . Suppose that, for each η⃗ ∈ Rn, there exists wη⃗ ∈ Y ∗ such
that ξη⃗

.
= T #wη⃗ ∈ ∂ψη⃗(x̃) and that the functional φ̃ satisfies the following hypotheses:

1. φ̃(y1,y3)≤ φ̃(y1,y2)+ φ̃(y2,y3), for all y1,y2,y3 ∈ Y ;

2. there exists C > 0 such that ∥y1 − y2∥ ≤C φ̃(y2,y1), ∀y1, y2 ∈ R(T ).

Then, if η⃗∗
.
= η⃗

∥⃗η∥1
, for each minimizer xδ

η⃗
of the functional J p

φ̃ ,ψ⃗ ,⃗η
given in (1.4) for data yδ , it

follows that

• if p > 1 and q is the conjugate of p then

d
ψη⃗∗
ξη⃗∗

(xδ

η⃗
, x̃)≤

1
p δ p + ∥⃗η∥1 ∥wη⃗∗∥C δ + 1

q

(
∥⃗η∥1 ∥wη⃗∗∥C

)q

∥⃗η∥1
.

• if p = 1 and ∥⃗η∥1 ∥wη⃗∗∥C ≤ 1 then

d
ψη⃗∗
ξη⃗∗

(xδ

η⃗
, x̃)≤ δ

1+ ∥⃗η∥1 ∥wη⃗∗∥C
∥⃗η∥1

.

Proof. Since xδ

η⃗
is a minimizer of the functional J p

φ̃ ,ψ⃗ ,⃗η
for data yδ , and φ̃(y,yδ ) ≤ δ and

T x̃ = y, it follows that

1
p

φ̃(T xδ

η⃗
,yδ )p + η⃗ · ψ⃗(xδ

η⃗
)≤ 1

p
φ̃(T x̃,yδ )p + η⃗ · ψ⃗(x̃)

≤ 1
p

δ
p + η⃗ · ψ⃗(x̃),

and, in consequence,

1
p

φ̃(T xδ

η⃗
,yδ )p

∥⃗η∥1
+ η⃗∗ · ψ⃗(xδ

η⃗
)≤ 1

p
δ p

∥⃗η∥1
+ η⃗∗ · ψ⃗(x̃)

1
p

φ̃(T xδ

η⃗
,yδ )p

∥⃗η∥1
+ψη⃗∗(x

δ

η⃗
)≤ 1

p
δ p

∥⃗η∥1
+ψη⃗∗(x̃)

1
p

φ̃(T xδ

η⃗
,yδ )p

∥⃗η∥1
≤ 1

p
δ p

∥⃗η∥1
+ψη⃗∗(x̃)−ψη⃗∗(x

δ

η⃗
). (3.8)
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Now, by hypothesis, there exists wη⃗∗ ∈ Y ∗ such that ξη⃗∗
.
= T #wη⃗∗ ∈ ∂ψη⃗∗(x̃). Then, since ψη⃗∗

is a convex functional, from inequality (3.8) it follows that

1
p

φ̃(T xδ

η⃗
,yδ )p

∥⃗η∥1
+d

ψη⃗∗
ξη⃗∗

(xδ

η⃗
, x̃)

≤ 1
p

δ p

∥⃗η∥1
+ψη⃗∗(x̃)−ψη⃗∗(x

δ

η⃗
)+d

ψη⃗∗
ξη⃗∗

(xδ

η⃗
, x̃)

=
1
p

δ p

∥⃗η∥1
+
[
T #wη⃗∗ , x̃− xδ

η⃗

]
≤ 1

p
δ p

∥⃗η∥1
+∥wη⃗∗∥C φ̃

(
T xδ

η⃗
,yδ

)
+∥wη⃗∗∥C φ̃

(
yδ ,T x̃

)
by hypotheses 1 and 2

≤ 1
p

δ p

∥⃗η∥1
+∥wη⃗∗∥C φ̃

(
T xδ

η⃗
,yδ

)
+∥wη⃗∗∥C δ . since φ̃(yδ ,y)≤ δ and T x̃ = y

Then,

1
p

φ̃(T xδ

η⃗
,yδ )p −∥⃗η∥1 ∥wη⃗∗∥C φ̃

(
T xδ

η⃗
,yδ

)
+ ∥⃗η∥1 d

ψη⃗∗
ξη⃗∗

(xδ

η⃗
, x̃)≤ 1

p
δ

p + ∥⃗η∥1 ∥wη⃗∗∥C δ .

(3.9)

• If p > 1, it immediately follows from Young’s inequality that

∥⃗η∥1 ∥wη⃗∗∥C φ̃

(
T xδ

η⃗
,yδ

)
≤ 1

p
φ̃(T xδ

η⃗
,yδ )p +

1
q

(
∥⃗η∥1 ∥wη⃗∗∥C

)q
,

which with (3.9) imply that

−1
q

(
∥⃗η∥1 ∥wη⃗∗∥C

)q
+ ∥⃗η∥1 d

ψη⃗∗
ξη⃗∗

(xδ

η⃗
, x̃)≤ 1

p
δ

p + ∥⃗η∥1 ∥wη⃗∗∥C δ .

Thus,

d
ψη⃗∗
ξη⃗∗

(xδ

η⃗
, x̃)≤

1
p δ p + ∥⃗η∥1 ∥wη⃗∗∥C δ + 1

q

(
∥⃗η∥1 ∥wη⃗∗∥C

)q

∥⃗η∥1
.

• If p = 1, by (3.9) it turns out that(
1−∥⃗η∥1 ∥wη⃗∗∥C

)
φ̃(T xδ

η⃗
,yδ )+ ∥⃗η∥1 dψ

ξη⃗∗
(xδ

η⃗
, x̃)≤ δ + ∥⃗η∥1 ∥wη⃗∗∥C δ ,

and since 1−∥⃗η∥1 ∥wη⃗∗∥C ≥ 0, finally, it follows that

d
ψη⃗∗
ξη⃗∗

(xδ

η⃗
, x̃)≤ δ

1+ ∥⃗η∥1 ∥wη⃗∗∥C
∥η∥1

.

□
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Note that if ηi = 0, for all i ≥ 2, that is, there is only one penalty term, the error estimate of
Theorem 3.5 agrees with that of the Theorem 3.3.

As was done in the case in which there is only one penalty term, a result is presented below that
generalizes the Theorem 3.4 for the case in which two or more penalty terms are used and where
the hypothesis related to a source condition present in the Theorem 3.5 is replaced by one that
considers a variational inequality.

Theorem 3.6. Let X and Y be Banach spaces, T ∈ L (X ,Y ), φ̃ : Y ×Y → [0,+∞), ψi :
X → [0,+∞) convex functionals for all i = 1, . . . ,n, ψη⃗ : X → R given by ψη⃗(x)

.
= η⃗ · ψ⃗(x),

where ψ⃗(x) .
= (ψ1(x), . . . ,ψn(x)), η⃗ = (η1, . . . ,ηn), x̃ the exact solution of (1.1) and yδ ∈ Y

such that φ̃(y,yδ ) ≤ δ and φ̃(yδ ,y) ≤ δ . Suppose that the functional φ̃ satisfies the following
hypotheses:

1. φ̃(y1,y3)≤ φ̃(y1,y2)+ φ̃(y2,y3), for all y1,y2,y3 ∈ Y ;

2. there exist β ∈ [0,∞) and ξ ∈ ∂ψ(x̃) such that [ξ , x̃− x]≤ β φ̃(T x,T x̃), for all x ∈ X .

Then, if η⃗∗
.
= η⃗

∥⃗η∥1
, for each minimizer xδ

η⃗
of the functional J p

φ̃ ,ψ⃗ ,⃗η
given in (1.4) for data yδ , it

follows that

• if p > 1 and q is the conjugate of p then

d
ψη⃗∗
ξη⃗∗

(xδ

η⃗
, x̃)≤

1
p δ p + ∥⃗η∥1 β δ + 1

q (∥⃗η∥1 β )q

∥⃗η∥1
.

• if p = 1 and ∥⃗η∥1 β ≤ 1 then

d
ψη⃗∗
ξη⃗∗

(xδ

η⃗
, x̃)≤ δ

1+ ∥⃗η∥1 β

∥⃗η∥1
.

Proof. Analogously to the proof of Theorem 3.5, since xδ

η⃗
is a minimizer of the functional

J p
φ̃ ,ψ⃗ ,⃗η

for data yδ and φ̃(y,yδ )≤ δ , it follows that

1
p

φ̃(T xδ

η⃗
,yδ )p

∥⃗η∥1
≤ 1

p
δ p

∥⃗η∥1
+ψη⃗∗(x̃)−ψη⃗∗(x

δ

η⃗
).
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Then,

1
p

φ̃(T xδ

η⃗
,yδ )p

∥⃗η∥1
+d

ψη⃗∗
ξη⃗∗

(xδ

η⃗
, x̃)

≤ 1
p

δ p

∥⃗η∥1
+ψη⃗∗(x̃)−ψη⃗∗(x

δ

η⃗
)+d

ψη⃗∗
ξη⃗∗

(xδ

η⃗
, x̃)

=
1
p

δ p

∥⃗η∥1
+
[
ξη⃗∗ , x̃− xδ

η⃗

]
≤ 1

p
δ p

∥⃗η∥1
+β φ̃

(
T xδ

η⃗
,yδ

)
+β φ̃

(
yδ ,T x̃

)
by hypotheses 1 and 2

≤ 1
p

δ p

∥⃗η∥1
+β φ̃

(
T xδ

η⃗
,yδ

)
+β δ since φ̃(yδ ,y)≤ δ and T x̃ = y,

and thus,

1
p

φ̃(T xδ

η⃗
,yδ )p −∥⃗η∥1 β φ̃

(
T xδ

η⃗
,yδ

)
+ ∥⃗η∥1 d

ψη⃗∗
ξη⃗∗

(xδ

η⃗
, x̃)≤ 1

p
δ

p + ∥⃗η∥1 β δ ,

and the proof follows analogously to that of Theorem 3.5 with β instead of ∥wη⃗∗∥C in (3.9). □

It is appropriate to mention here that for the case in which there is only one penalizing term,
that is, if ηi = 0, for all i ≥ 2, the error estimate obtained in Theorem 3.6 is the same as that of
Theorem 3.4.

4 CONCLUSIONS

In this work, error estimates were presented for the case in which the regularized solution is
obtained by minimizing doubly-generalized Tikhonov-Phillips functionals. In particular, for the
case of generalized Tikhonov-Phillips functionals, we have seen that the error estimates obtained
coincide with those presented by K. Ito and B. Jin in [11]. The first result obtained was mainly
based on an assumption given by a source condition. We have seen that it is possible to replace
this assumption by a variational inequality obtaining analogous results of error estimates. Finally,
relationships were established between the optimality condition associated with the problem, the
source condition and the variational inequality. On the other hand, because it is known that,
in certain cases, the use of two or more penalizing terms is useful, generalizations of the re-
sults of error estimates are presented for cases in which the regularized solution is obtained by
minimizing doubly-generalized Tikhonov-Phillips functionals with multiple penalizers.
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