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ABSTRACT. A model is made for the dynamics of the transmission of the new SARS-CoV-2 coronavirus,
which caused the COVID-19 pandemic. This model is based on the Susceptible–Infectious–Recovered
model with heterogeneity in the susceptible population and in the infectious population. The susceptible
population is divided into two subpopulations: individuals who are health professionals and individuals
who are not. The infectious population is also divided into two subpopulations: individuals who are hos-
pitalized and individuals who are not. A qualitative analysis of the theoretical model is performed, as well
as simulations with official data regarding COVID-19 in the city of Manaus, Amazonas, Brazil, which
corroborate the profile of the solution curves defined by the model.

Keywords: population heterogeneity, Lyapunov function, basic reproduction number.

1 INTRODUCTION

In December 2019, several cases of pneumonia occurred in Wuhan, China, caused by a new
coronavirus, named SARS-CoV-2 by the International Coronavirus Study Committee [6]. This
new coronavirus is the causative agent of the COVID-19 disease, which, on March 11, 2020, was
declared a pandemic by the World Health Organization (WHO). The most common symptoms
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4Departamento de Ciências e Matemática, Instituto Federal de São Paulo, R. Pedro Vicente, 625, 01109-010, São Paulo,
SP, Brazil – E-mail: monicahrl@ifsp.edu.br https://orcid.org/0000-0001-9189-7615
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caused by SARS-COV-2 are fever, tiredness and a dry cough. In addition, some people have
reported pain, nasal congestion, headache, conjunctivitis, sore throat, diarrhea, loss of taste or
smell, and rash or discoloration of fingers or toes [12].

One year after the start of the pandemic, by March 22, 2021, more than 123.5 million cases and
more than 2.7 million deaths due to Covid-19 were confirmed worldwide [12]. The first con-
firmed case of COVID-19 in Brazil, according to the Ministry of Health, occurred on February
26, 2020, and by March 22, 2020 there were more than 11.9 million confirmed cases and 294,115
deaths due to COVID-19 in the world [9, 12]. The first wave in Brazil had its peak between the
months of July to September 2020, and in November 2020 the number of cases started to grow
again, characterizing the beginning of the second wave. Also in September, when the national
scenario was stabilizing with 4.7 million confirmed cases and 141,741 deaths [18], there was
an increase in the number of cases in the city of Manaus, the capital of the state of Amazonas,
characterizing and starting the second pandemic wave in that city.

Manaus had its first confirmed case of COVID-19 on March 11, 2020, after twelve suspected
cases and eight discarded, and was, in April and May, the first Brazilian capital to suffer a
health system collapse. After the collapse, with the reduction of cases, social isolation eased
in June, which probably led to the increase in cases in September. Understanding how Covid-
19’s dynamics occurred in the city of Manaus is fundamental to finding ways to contain it in that
region.

There are several articles that mathematically portray the dynamics of COVID-19 transmission
based on the classic model of the Susceptible–Infectious–Recovered (SIR) type which was de-
veloped by Kermack and McKendrick in 1927 [8] (see [2], [5], [11], [13], [10]), which assumes
that the susceptibility and the infectivity for the population are homogeneous.

In other words, any susceptible individual has the same probability of becoming infected through
encountering an infectious individual; moreover, infectious individuals have the same probability
of transmitting the disease. However, health professionals are more susceptible to contracting
this disease because they are in direct contact with patients, moreover, each infectious individual
responds differently, and may present mild to moderate symptoms (not requiring hospitalization)
or severe symptoms (requiring hospitalization).

This paper proposes a model in which a specific dynamic is considered for susceptible individuals
who are health professionals, different from the dynamics for individuals who are not health
professionals. Two distinct classes of infectious persons are also considered, according to the
severity of the disease: requiring hospitalization or not, and it is found that these characteristics
directly influence the transmission dynamics of COVID-19.

A qualitative analysis of the stability of the theoretical model is carried out [1, 3], in which the
Basic Reproduction Number, R0, is obtained by the Next Generation Matrix method [17]. In
addition, simulations of the model are carried out, which are then compared with data released
by the city of Manaus, Amazonas, Brazil, in the period from March 31 to September 1, 2020,
when the first wave of COVID-19 occurred.

Trends Comput. Appl. Math., 23, N. 3 (2022)
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2 MATHEMATICAL MODEL

In this section, a compartmental epidemiological model is presented for a preliminary analysis
of the dynamics of COVID-19. It is assumed that part of the population is in quarantine, but the
model does not consider a specific compartment for that part of the population. Quarantine is
reflected in the parameters βi, i = 1,2 that indicate the strength of infection, which are obtained
empirically. It is noteworthy that the period of validity of the model is short, as it is assumed that
individuals do not change their behaviour, that is, individuals who are in quarantine do not leave
quarantine, and that individuals who are not in quarantine remain so. Thus, the proposed model
is idealized, and not realistic, as it is intrinsic to human beings to change their behaviour and not
have specific periods for them to occur. The population size N must be the total population minus
the quarantined, which remains constant during the first wave, and large enough to consider its
classes as continuous variables with respect to the time variable t, scaled in days. With respect to
time, the 6 disjoint classes (subpopulations) considered are denoted by the variables S1(t), S2(t),
I1(t), I2(t), C(t) and D(t), and defined as:

• S1(t) is the number of susceptible individuals who are not health professionals;

• S2(t) is the number of susceptible individuals who are healthcare professionals;

• I1(t) is the number of infectious individuals who are asymptomatic or symptomatic with
only mild to moderate symptoms who are not hospitalized;

• I2(t) is the number of symptomatic infectious individuals who require hospitalization;

• C(t) is the number of individuals recovering from COVID-19;

• D(t) is the number of individuals who die due to COVID-19.

Therefore, at time t, the total population is given by

N = S1(t)+S2(t)+ I1(t)+ I2(t)+C(t)+D(t). (2.1)

In Figure 1, the compartmental model based on the observed dynamics for COVID-19 is pre-
sented, considering these six classes of the population interacting knowing that the disease is
favoured by a larger number of contacts between the susceptible and infectious, as in all direct
transmission diseases.

It is assumed that health professionals who are in “direct contact” with infectious patients, in gen-
eral, have a greater degree of susceptibility than any other individual and infections occur in the
hospital environment. Thus, susceptible individuals were compartmentalized into two classes, S1

and S2. It is also assumed that health professionals become infected after a successful encounter
with hospitalized infectious individuals, β2S2I2, and other individuals who are in S1 can be in-
fected after a successful encounter with infectious individuals not hospitalized, β1S1I1. All newly
infected people migrate to class I1, but a part of them, λ I1, develop severe symptoms, requiring

Trends Comput. Appl. Math., 23, N. 3 (2022)
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hospitalization, and thus migrate to class I2. The terms γ1I1 and γ2I2 represent individuals who
have recovered from COVID-19 and therefore migrate from their classes to class C. It is also as-
sumed that, due to their health status, only individuals in I2 may die, which is represented by the
term −µI2 in the class I2 and, therefore, µI2 represents entry into class D. Note that this model
does not consider vital dynamics, and so the deaths are exclusively due to COVID-19. Note also
that the parameters β1, β2, γ1, γ2, λ and µ are positive constants that depend exclusively on the
characteristics of COVID-19 in the population.

S1

I1 C

S2

I2 D

β1S1I1

β2S2I2

λ I1

γ1I1

µI2

γ2I2

Figure 1: Compartmental model for the dynamics of COVID-19 transmission, considering two
classes for the susceptible population: health professionals, S2, and those who are not health
professionals, S1; two classes of infectious divided according to symptoms: mild to moderate, I1,
and severe, I2. In addition there is the class of cured individuals, C, and another class, the dead,
D. Made by the authors.

Thus, for the study of the dynamics of COVID-19 transmission, the following system of ordinary
differential equations is considered:

S′1 = −β1S1I1

S′2 = −β2S2I2

I′1 = β1S1I1 +β2S2I2− γ1I1−λ I1

I′2 = λ I1− γ2I2−µI2

C′ = γ1I1 + γ2I2

D′ = µI2,

(2.2)

where ( ′ ) represents the differentiation with respect to t: d
dt .

Trends Comput. Appl. Math., 23, N. 3 (2022)
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3 QUALITATIVE ANALYSIS

Once S1(t), S2(t), I1(t) and I2(t) are known, it is possible to obtain C(t)+D(t) by equation (2.1)
for each instant of time t since N is constant; in addition, C and M do not interfere in the dynamics
of the other subpopulations, so for the qualitative analysis of the models, the last two equations
of system (2.2) are disregarded. Moreover, the system of equations (2.2) is reordered to fit the
theory involving the Next Generation Matrix presented in [17], considering then the new system

I′1 = β1S1I1 +β2S2I2− γ1I1−λ I1

I′2 = λ I1− γ2I2−µI2

S′1 = −β1S1I1

S′2 = −β2S2I2.

(3.1)

The system (3.1) can now be rewritten as

x′ = f (x), (3.2)

where x=
(
I1, I2,S1,S2

)
is the state variable and f :R4→R4 is a function with f =( f1, f2, f3, f4)

coordinates given by

I′1 = f1(x), I′2 = f2(x), S′1 = f3(x) and S′2 = f4(x).

Note that f is of class C∞ and, therefore, the (3.1) system has a single solution for each initial
condition x0 ∈ R4. Consider the set

Ω =
{
(I1, I2,S1,S2) ∈ R4

+ | I1 + I2 +S1 +S2 ≤ N
}

as the biological space, that is, the epidemiologically feasible space.

3.1 Equilibrium Points

The system (3.1) in four-dimensional phase space (I1, I2,S1,S2) has infinitely many points of
equilibrium, making up the set given by

Ω
∗ =

{
(0,0,S1,S2) ∈ R4

+ |S1 +S2 ≤ N
}
, (3.3)

and the system (3.1) does not admit non-trivial equilibrium points.

Theorem 3.1. The biological space Ω of the model (3.1) is positively flow-invariant.

Proof. It needs to be shown that the solution curve from an initial condition in Ω does not cross
the boundary ∂Ω, for Ω to t > 0. Note that ∂Ω is composed of 5 subspaces, which are denoted
by Ωi, i = 1, . . . ,5, that is,

∂Ω = Ω1∪Ω2∪Ω3∪Ω4∪Ω5.

Trends Comput. Appl. Math., 23, N. 3 (2022)
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Therefore, it will be proved that the field f associated with system (3.2) defined on Ωi, i = 1,2,5,
points to within Ω and that Ωi, i = 3,4, are invariant. Writing ei, i = 1, . . . ,4 for the vectors of
the canonical basis of R4, we have that:

1. If q ∈Ω1\Ω∗, with Ω1 =
{
(I1, I2,S1,S2) ∈ R4

+|I1 = 0, I2 +S1 +S2 ≤ N
}

, then f (q) points
into Ω. In fact,

〈
f (q),e1

〉
= β2S2I2 ≥ 0. Furthermore,

(a) if S1 = 0, then
〈

f (q),e3
〉
= 0 and if S1 = 0 and I2 +S2 = N, then

〈
f (q),e2 + e4

〉
=

−(γ2 +µ)I2−β2S2I2 < 0;

(b) if S2 = 0, then
〈

f (q),e4
〉
= 0. Moreover, if I2 + S1 = N, then

〈
f (q),e2 + e3

〉
=

−(γ2 +µ)I2 < 0;

(c) if S1 6= 0, S2 6= 0 and I2 + S1 + S2 = N, then
〈

f (q),e2 + e3 + e4
〉
= −(γ2 + µ)I2−

β2S2I2 < 0, and

(d) if I2 = N, then
〈

f (q),e2
〉
=−‖ f (q)‖< 0.

2. If q ∈Ω2\Ω∗, with Ω2 =
{
(I1, I2,S1,S2) ∈ R4

+|I2 = 0, I1 +S1 +S2 ≤ N
}

, then f (q) points
into Ω. The proof is analogous to the one for Ω1.

3. If q ∈Ω3\Ω∗, with Ω3 =
{
(I1, I2,S1,S2) ∈R4

+|S1 = 0, I1 + I2 +S2 ≤ N
}

, then f (q) points
into Ω3. In fact, in this case,

〈
f (q),e3

〉
= 0. Furthermore,

(a) if I1 = 0, then
〈

f (q),e1
〉
= β2S2I2 ≥ 0. Furthermore, if S2 = 0, then

〈
f (q),e1

〉
= 0

and
〈

f (q),e2
〉
= −‖ f (q)‖ < 0 and if I2 + S2 = N, then

〈
f (q),e2 + e4

〉
= −(γ2 +

µ)I2−β2S2I2 < 0;

(b) if I2 = 0, then
〈

f (q),e2
〉
= λ I1 > 0. Furthermore, if S2 = 0, then

〈
f (q),e1

〉
=−(γ1+

λ )I1 < 0 and
〈

f (q),e4
〉
= 0, and if I1+S2 =N, then

〈
f (q),e1+e4

〉
=−(γ1+λ )I1 <

0 and
〈

f (q),e1 + e2 + e4
〉
=−γ1I1 < 0;

(c) if S2 = 0, then
〈

f (q),e4
〉
= 0. Furthermore, if I1 + I2 = N, then

〈
f (q),e1 + e2

〉
=

−γ1I1− (γ2 +µ)I2 < 0;

(d) if I1 + I2 +S2 = N, then
〈

f (q),e1 + e2 + e4
〉
− γ1I1− (γ2 +µ)I2 < 0 and

(e) if I1 = N, then
〈

f (q),e1
〉
=−(γ1 +λ )N < 0,

〈
f (q),e2

〉
= λN > 0 and

〈
f (q),e1 +

e2
〉
=−γ1N < 0.

4. If q ∈Ω4 \Ω∗, with Ω4 =
{
(I1, I2,S1,S2) ∈R4

+|S2 = 0, I1 + I2 +S1 ≤ N
}

, then f (q) points
into Ω4. The proof is analogous to the one for Ω3.

5. If q ∈ Ω5 \Ω∗, with Ω5 =
{
(I1, I2,S1,S2) ∈ R4

+|I1 + I2 + S1 + S2 = N
}

, then f (q) points
into Ω. In fact, in this case

〈
f (q),η

〉
=−γ1I1− (γ2+µ)I2 < 0, with η = e1+e2+e3+e4.

Furthermore, if I1 = 0, then
〈

f (q),e1
〉
= β2S2I2 ≥ 0. Furthermore,

Trends Comput. Appl. Math., 23, N. 3 (2022)
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(a) if S1 = 0, then

i. if I2 +S2 = N, then
〈

f (q),e2 + e4
〉
=−(γ2 +µ)I2−β2S2I2 < 0 and

ii. if S2 = 0, then
〈

f (q),e2
〉
=−‖ f (q)‖< 0.

(b) if S2 = 0, then

i. if I2 +S1 = N, then
〈

f (q),e2 + e3
〉
=−‖ f (q)‖< 0 and

ii. if S1 = 0, then
〈

f (q),e2
〉
=−‖ f (q)‖< 0.

For the other components of ∂Ω5 the proofs are analogous.

So, given q ∈ Ω and φ(t,q) a solution that passes through q at t = 0, then φ(t,q) does not cross
∂Ω. Hence, φ(t,q) ∈Ω for all t ≥ 0 and for all q ∈Ω, that is, Ω is positively flow-invariant. �

Theorem 3.2. A Lyapunov function for system (3.2) in Ω is

L = I1 + I2 +S1 +S2.

Proof. Note that for x =
(
I1, I2,S1,S2

)
∈Ω, we have

L′(x) = I′1 + I′2 +S′1 +S′2
= −γ1I1−λ I1 +λ I1− γ2I2−µI2

= −γ1I1− γ2I2−µI2

= −γ1I1− (γ2 +µ)I2.

So if x∈Ω\Ω∗, then L′(x)< 0 and if x∗ = (0,0,S1,S2)∈Ω∗, then we have L′(x) = 0. Therefore,
each equilibrium point x∗ of system (3.2) is stable. �

Remark: Thus, the point x∗ can be called a Disease Free Equilibrium (DFE), in accordance
with [17].

3.2 The Basic Reproduction Number

We now seek to determine the threshold value, R0, of model (3.1), which was considered to
study the stability of the DFE, in accordance with [17].

Consider x =
(
I1, I2,S1,S2

)
and write system (3.1) in the form

x′ = F (x)−V (x)

with

F =


β1S1I1 +β2S2I2

0
0
0

 e V =


γ1I1 +λ I1

γ2I2 +µI2−λ I1

β1S1I1

β2S2I2


Trends Comput. Appl. Math., 23, N. 3 (2022)



i
i

“A5-1611” — 2022/8/4 — 21:25 — page 506 — #8 i
i

i
i

i
i

506 COVID-19 IN MANAUS, BRAZIL

with the DFE being x∗ = (0,0,S1,S2) ∈Ω. So at the point x∗ we get the Infection Matrix

F=

(
β1S1 β2S2

0 0

)
and the Transmission Matrix

V=

(
γ1 +λ 0
−λ γ2 +µ

)
and from these we obtain the Next Generation Matrix

FV−1 =


β1S1(µ+γ2)+β2S2λ

(γ1+λ )(µ+γ2)
β2S2
µ+γ2

0 0

 .

The number of individuals infected by an infected individual at each instant of time t is given by
the spectral radius of the Next Generation Matrix, that is,

R(t) =
β1S1(t)
γ1 +λ

+
λ

γ1 +λ

β2S2(t)
µ + γ2

, (3.4)

for t ≥ 0.

Note that for each instant t, the term β1S1
γ1+λ

is the average number of infected individuals who are

not health professionals, the factor λ

γ1+λ
is the probability that an infected individual without se-

vere symptoms, in other words, who are not hospitalized, I1, will survive and will develop severe
symptoms, requiring hospitalization, and the factor β2S2

µ+γ2
is the number of healthcare individuals

who are infected by an individual with severe symptoms. Hence, R(t) gives the total number of
new individuals who are infected by I1 or by I2 and which continuously depends on S1(t) and
S2(t), t ≥ 0. Thus, R(0) =R0 is the Basic Reproduction Number. In addition, for t > 0, we have
that R(t) is the Effective Reproduction Number.

Figure 2 shows the evolution of subpopulations over time for a hypothetical model according
to system (2.2). It is noteworthy that the populations in this case are non-real, the parameters
were obtained empirically and do not correspond to the real data, and the curves are presented in
order to better understand the behavior of the subpopulations. Later, in section 4, curves obtained
according to real data are presented, as well as the respective parameters.

4 SIMULATIONS

For the simulations of model (2.2), data referring to the city of Manaus were considered, in
which the population was taken as being 2.2 million inhabitants, of which 23,176 are health
professionals [4, 7, 14].

In all simulations, model (2.2) and the parameter values and initial conditions presented in Tables
1 and 2, respectively, were used. The data on confirmed and obtained cases caused by COVID-19
were extracted from the COVID-19 Manaus report, prepared by the Municipal Health Secretariat

Trends Comput. Appl. Math., 23, N. 3 (2022)
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Figure 2: Solution curves of system (2.2). Made by the authors.

(SMS) of Manaus [16]. The simulations were carried out over a period of 155 days, which is
equivalent to the period from March 31 to September 1, 2020, when there was the first wave of
COVID-19 in Manaus, and a population unit corresponds to 10,000 individuals.

The simulations were made at software Octave, that have a set of solvers for initial value prob-
lems for Ordinary Differential Equations. In particular, we utilized the ode45 command, whose
intern implementer is the Runge-Kutta method, a fourth–order accurate integrator therefore the
local error normally expected is O(h5).

Table 1: Parameter values based on [12], except βi, i = 1,2 which were obtained empirically.

β1 β2 γ1 γ2 µ λ

0.00078 0.0009 0.0666 0.0500 0.0222 0.0250

Table 2: Initial conditions, according to [14, 16], with each population unit corresponding to
10,000 individuals.

S1(0) S2(0) I1(0) I2(0) C(0) M(0)
217.6830 2.3176 0.1340 0.0134 0.0023 0.0002

In Figure 3, we present two curves: one that describes the evolution of the cumulative number
of deaths caused by COVID-19 according to model (2.2) and another that represents the cumu-
lative number of deaths caused by COVID-19 in the city of Manaus according to [16]. Note that
these curves have similar profiles, indicating that the proposed model satisfactorily describes the

Trends Comput. Appl. Math., 23, N. 3 (2022)
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dynamics of COVID-19 in the city of Manaus, mainly between the 20th and the 100th day, but
until the 100th day profiles are close, a period corresponding to that from March 31 to June 10,
2020.

0 20 40 60 80 100 120 140 160

Time in days

0

0.05

0.1

0.15

0.2

0.25

0.3
Simulation
Manaus Data

Figure 3: The line represents the cumulative number of deaths due to COVID-19 simulated ac-
cording to model (2.2) and using the data in Tables 2 and 1. The irregular curve represents the
cumulative number of deaths due to COVID-19 in Manaus, according to [16]. Made by the au-
thors.

In Figure 4 we have: the evolution of the cumulative number of infected individuals, I, that is,
those affected by COVID-19 over time according to the proposed model, with I(t) = I1(t) +
I2(t)+C(t)+M(t) and the evolution of the cumulative number of confirmed cases of COVID-19
in Manaus, according to [16]. These curves also have similar outlines during the first hundred
days and, from the hundredth day onwards, the simulation curve (line curve) tends to stabilize,
while the curve of cases confirmed by COVID-19 in Manaus is on the rise. Thus, through the
model developed, it is possible to recommend that at the end of the hundredth day, the first wave
of COVID-19 in the city of Manaus is over.

The basic reproduction number for the scenarios presented, using formula (3.4), at t = 0, is
R0 = 1.83, indicating that at the beginning of the pandemic (March 31, 2020) each infectious
individual, when exposed to the susceptible population, infected an average of 1.83 individuals,
enough for the epidemic to establish itself, as can be seen by the number of confirmed cases over
time in Manaus, see Figure 4. The curve of the effective reproduction number of model (2.2),
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Figure 4: The line curve represents the cumulative number of people infected by COVID-19,
I = I1 + I2 +C+M, obtained by simulating the model (2.2) with data from Tables 2 and 1; the
irregular curve represents the cumulative number of confirmed cases of COVID-19 in Manaus,
according to [16]. Made by the authors.

given by the function in (3.4) which represents the number of new individuals infected by I1

and/or by I2 at each instant of time is shown in Figure 5; the simulation period here is greater
than 155 days in order to have a better visualization of the profile of this curve. Also, from the
curve in Figure 5, the total number of new individuals infected by COVID-19 is decreasing over
time, and on the hundredth day (June 10, 2020) this number is already lower than 1, indicating
that the transmission of the disease is slowing down, corroborating the stability of the simulated
curve of those infected by COVID-19, see Figure 4. In Figure 6 (b), the effective reproduction
number obtained from the seven-day moving average of the number of confirmed daily cases of
COVID-19 in the city of Manaus is shown, according to [16]. Comparing Figures 5, 6 (a) and
6 (b) it is possible to notice that, in fact, there is a drop in the values of Rt right after the beginning
of the epidemic in Manaus until it reached stability. The oscillations in Rt in Figure 6 (b) can be
justified by the exposure of the susceptibles who were in isolation, which is not foreseen in model
(2.2). Furthermore, due to the emergence of new variants of the virus, among other possibilities,
there is a variation in the strength of infection, that is also reflected in the value of Rt , which was
already expected.
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Figure 5: Effective reproduction number described by the function (3.4) with data from Tables 1
and 2 and simulated data from (2.2). Made by the authors.
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Figure 6: Data from COVID-19 for the period from March 31 to September 1, 2020, in Manaus,
according to [16]. Made by the authors.
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Figure 7: Health professionals infected according to model (2.2) and data from Tables 1 and 2.
Made by the authors.

According to the Amazonas State Department of Health (SES-AM), among those health pro-
fessionals in Manaus who were tested for COVID-19 in April 2020, the percentage of positives
was 29%, in early May 2020 this percentage dropped to around 5.5%, but in July it reached
10% [14, 15]. SES-AM and the Manaus SMS did not disclose the numbers of healthcare pro-
fessionals infected over time, but according to our model we had 4,903 healthcare professionals
infected with SARS-CoV-2 in Manaus by the 100th day, which constitutes 21.15% of profes-
sionals. In Figure 7 we present the profile of the curve of healthcare professionals infected over
time according to model (2.2).

We emphasize that the parameter values were obtained considering the total population of Man-
aus as being susceptible. However, if we assume that the portion of the population in isolation
is 40%, for example, new simulations must be carried out to determine the parameters for this
scenario.

5 FINAL CONSIDERATIONS

The model proposed in this article contemplates a different dynamic from those of classic epi-
demiological models regarding the process of contamination by COVID-19, since it considers
a greater susceptibility for health professionals, as they are in direct contact with patients who
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are hospitalized and infected with the virus. In this way, the modeling encompasses a COVID-19
contagion dynamic that makes this mathematical model closer to reality.

Through a qualitative analysis, it was verified that the biological space of the model is positively
invariant by flow, a necessary condition for the validation of an epidemiological model. In addi-
tion, the basic reproduction number, which indicates the total number of new individuals that are
infected over time, was also determined, and this number depends continuously on the number
of susceptible individuals S1 and S2.

The solution curves of the model for the number of infected and number of deaths, obtained from
the simulations, present profiles similar to the curves of confirmed cases and deaths by COVID-
19 in the city of Manaus, showing the validity of the model in the period of the first wave in this
city, with R0 being estimated to be 1.83 and with an estimated 4,903 healthcare professionals
infected by the 100th day, as of March 31, 2020.

Finally, it is noteworthy that the emergence of other waves can be justified by the exposure of
susceptible individuals who were in isolation and/or by the development of new variants of the
virus, which alters the infectiousness of the disease. However, if the quarantine that started in
March had been maintained, the results would be in accordance with what was presented.
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Accessed on: 05/03/2021.

[17] P. Van Den Driessche & J. Watmough. Reproduction numbers and sub-threshold endemic equilibria
for compartmental models of disease transmission. Mathematical Biosciences, 180(1-2) (2002), 29–
48.

[18] World Health Organization. Brazil Situation (2020). URL: https://covid19.who.int/region/amro/country/br
Accessed on: 09/28/2020.

Trends Comput. Appl. Math., 23, N. 3 (2022)


