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ABSTRACT. In this contribution we analyze a discretized SIR (Susceptible, Infectious, and Removed)
compartmental model, to investigate the role of individual interactions in the spread of diseases. The com-
partments Si, j, Ii, j and Ri, j (i, j,= 1,2, ...,n) are spatially distributed in a two-dimensional n× n network.
We assume that the dynamics follow the well-known SIR-like iteration within the population in each (i, j)
site. Moreover, the dynamics are enriched by considering a multi-population interaction following a Gaus-
sian spatial distribution. Therefore, the mobility of individuals between distinct networks is measured from
the width α of the Gaussian distribution. The interaction of individuals between distinct sites, responsible
for the contagion between different populations, is assumed to occur in a time interval smaller than a fixed
interval h so that, the total population in each site (i, j), given by Ni, j = Si, j + Ii, j +Ri, j, remained constant
(for example, individual leaves his home site (i, j) to work at a neighboring site and returns to his home
in a time interval less than h ). We numerically explore some scenarios of population interaction, based on
distinct choices of width α , that include a hypothetically rapidly closedness and reopening of the economy.
The results found show interesting dynamics in the infected population due to the interaction parameter
α(t) between the populations. Finally, the model can be applied to evaluate the spread of diseases such as
COVID–19 enabling decision making in different contexts.

Keywords: SIR, multi-population interaction, diseases dissemination.

1 INTRODUCTION

Covid–19, caused by SARS-CoV-2, was first reports in Wuhan/China, in December 2019. From
them, it has spread to several countries, causing hundreds of thousands of deaths worldwide.
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Such a situation led the World Health Organization (WHO) to declare a pandemic state at 11 of
March of 2020 [15].

Since then, a race against time to understand and mitigate the Covid–19 spreading has led to a
shift in focus from much of the world scientific community. Such a scenario was not different
among the mathematicians. They aim to model and simulate scenarios of Covid–19 dynamics
that could help governmental and sanitary authorities in the difficult task of decision makers,
e.g., [5, 6]. The absence of efficient pharmacological treatments and massive vaccination (up to
nowadays), limited Covid–19 control spreading strategies to social isolation and mitigation of
population interactions, resulting in a prolonged population quarantine around the world. It is
well-known that human mobility significantly influences and changes the dynamics of a disease,
e.g. [1, 2, 11, 13, 14] and references therein. It was not different with the dynamic of spreading
of Covid–19, where models with the inclusion of space and population interaction have been
of paramount importance. However, the amount of interesting mathematical model contribu-
tions becomes enormous and a complete overview of the literature becomes almost impossi-
ble. Numerical and mathematical treatment of models related to the approach presented in this
contribution can be found in [7, 8, 9, 10, 12] and references therein.

In this contribution, we propose the analysis of distinct scenarios described by a discretized SIR
compartmental model with a multi-population interaction in the spread of diseases. Among them,
COVID–19 will be used as the motivation. Our approach assume that the Susceptible - Si, j, In-
fected or Infectious - Ii, j, and Removed or Recovered - Ri, j (i, j,= 1,2, ...,n) compartments are
distributed in a two-dimensional n×n network, where each site (i, j) in the network has a pop-
ulation of Ni, j = Si, j + Ii, j +Ri, j individuals, forming a SIR compartmental model with multiple
populations. With the main objective of investigating the influence of interactions between dis-
tinct populations in terms of the spatial dispersion scale, we also consider that distinct populations
individuals in the network interact following a normal spatial distribution (Gaussian), so that the
width α of the distribution is used as a measure of mobility in the network.

Main contributions of this short manuscript are summarized in:

• We propose a discretized SIR compartmental model as a driving dynamics of disease
dissemination through a spatially distributed multi-population.

• A Gaussian kernel is assumed to represent the probability of interaction with an infected
person, either in the current position or in neighboring populations.

• We present simulated scenarios for distinct choices of the weight parameter of the Gaussian
kernel that quantifies the spatial scale of the interaction between the distinct populations.

Outline: In Section 1.1, we present the model with spatially distributed populations interacting
as well as how the interaction will be considered as a Gaussian kernel. In Section 2, we present
and discuss the rule of spatial scale of the population’s interactions through distinct choices for

Trends Comput. Appl. Math., 23, N. 1 (2022)
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the wight parameter of the Gaussian kernel. In Section 3, we formulate some conclusions and
future directions.

1.1 Model

In this work, we assume that distinct n2 sub-populations are distributed in a two-dimensional
spatial network Ω = {1, · · · ,n}×{1, · · · ,n}. For simplicity, each patch1 x= (i, j) of this network
is represented by whole coordinates ( with i = is, j = js, where s is size of patch), for i ∈
{1, · · · ,n}, j ∈ {1, · · · ,n}, forming a n×n grid.

In each patch (i, j), for i∈ {1, · · · ,n} and j ∈ {1, · · · ,n}, the total population Ni, j,t = Si, j,t +Ii, j,t +

Ri, j,t is normalized and assumed constant, i.e. Ni, j,t = 1 (with the same rate of birth and mortality
µi, j), in each time instant t ≥ 0. The dynamics evolution occurs through the coupled system of
time-discrete equations

Si, j,t+1 = Si, j,t −

Si, j,t

βi, jIi, j,t + ∑
(î, ĵ)∈Vi, j

βî, ĵIî, ĵ,t

+µi, j(1−Si, j,t)

h

Ii, j,t+1 = Ii, j,t +

Si, j,t

βi, jIi, j,t + ∑
(î, ĵ)∈Vi, j

βî, ĵIî, ĵ,t

− (γi, j +µi, j)Ii, j,t

h

Ri, j,t+1 = Ri, j,t +(γi, jIi, j,t −µi, jRi, j,t)h (1.1)

where βi, j represents the contagious rates withing the (i, j) patch population and βî, ĵ accounts
for the contagious rates among distinct populations in the vicinity patches (î, ĵ) ∈Vi, j. It is worth
mentioning that distinct choices for βî, ĵ in the vicinity patches (î, ĵ) ∈ Vi, j corresponds to dis-
tinct patterns for the diseases dissemination trough the population network. Such behaviour will
be addressed in future contributions. The time-discrete dynamics 1.1 is assumed with initial
conditions, given by

Si, j,t0 = 1− Ii, j,t0 , Ii, j,t0 ≥ 0, and Ri, j,t0 = 0 , (1.2)

where Ii, j,t0 is the fraction of infected population in each patch (i, j), at time t0 = 0. It is worth
mentioning that for Ni, j,t remains constant in each time step. We assume that the time step-size h
is so that the interaction of individuals in the network, responsible for contagion between different
populations, occurs in a time interval less than h (for example, individual leaves his home at the
(i, j) site to work at a neighboring site and returns to his home in a time window less than h).
Next, we will make some observations regarding the dynamics 1.1, where we will describe the
parameters and the notation used.

i) The dynamics 1.1 should be interpreted as follows: the probability of infection is due to
contact between susceptible and infectious individuals from the same patch and is pro-
portional to the effective contact rate βi, j , or by contact with infectious individuals from

1We often use patch as a synonymous of site of sub-populations

Trends Comput. Appl. Math., 23, N. 1 (2022)
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neighboring sites, Vî, ĵ to î ∈ {1, · · · ,n , , : î 6= i} and ĵ ∈ {1, · · · ,n , , : ĵ 6= j}, which is pro-
portional to the rate βî, ĵ. Yet γi, j is the rate of removed and, finally, µi, j is the rate of births
and deaths, which we assume to be equal.

ii) If βî, ĵ = 0 for all î ∈ {1, · · · ,n , : î 6= i} and ĵ ∈ {1, · · · ,n , : ĵ 6= j}, then 1.1 amount to a
classical SIR model for the population of each patch in isolation, e.g. [3].

iii) A fundamental question addressed in this contribution is to determine how the disease
spreads through the network, given the interaction with the neighborhoods Vî, ĵ and, in this
case with the respective βî, ĵ 6= 0. For this, we will assume that the interaction occurs in an
infinitely small time-step compared to the time of the dynamic t→ t+1 (time step-size h),
so that there is no migration. In other words, individuals from different populations interact
and return to their reference sites, in time t.

To take into account item iii) above and taking into account a dynamic in which the evolution
occurs through contact between susceptible and infectious individuals, it is plausible to assume
that for the nearest sites the contagion rate βî, ĵ is greater than for more distant populations. Thus,
we will assume for simplicity a radial pattern, where the diseases are disseminated through the
network by a Gaussian redistribution kernel of the form

k(| x - y |2) = 1
2πα2 exp

[
− | x-y |2

2α2

]
, (1.3)

where, α is the parameter that quantifies the spatial scale of the interaction, x and y correspond
to different sites within the Ω domain. The redistribution kernel k(x,y) describes the dispersion
of the population interaction. In particular k(x,y) is the probability that an individual in the
y position will move to x during the dispersion step. This kernel may depend on the absolute
location or the relative distance. The first case can occur when the movement is in response to
the quality of the environment in terms of resources for survival, for example. If the environment
is heterogeneous, k(x,y) varies explicitly with position. The kernel redistribution must satisfy

∑
x∈Ω

k(x,y) = 1, (1.4)

since we consider zero mortality during the dispersion process [4, 8]. For this particular study,
the kernel that depends on the absolute location satisfactorily describes the behavior expected
in our model because contagion occurs due to proximity. The role of other distributions will be
considered in future contributions.

We will now proceed in order to explain how this kernel was included in the model (1.1). The
term

βi, jIi, j,t + ∑
(î, ĵ)∈Vi, j

βî, ĵIî, ĵ,t

Trends Comput. Appl. Math., 23, N. 1 (2022)
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in the model (1.1) is replaced by k(x,y)I where k(x,y) represent the probability of interaction
with an infected person, either in current position or in neighboring patches. So the new equations
are:

Si, j,t+1 = Si, j,t −

Si, j,t

k(x,y)Ii, j,t + ∑
(î, ĵ)∈Vi, j

k(x,y)Iî, ĵ,t

+µi, j(1−Si, j,t)

h

Ii, j,t+1 = Ii, j,t +

Si, j,t

k(x,y)Ii, j,t + ∑
(î, ĵ)∈Vi, j

k(x,y)Iî, ĵ,t

− (γi, j +µi, j)Ii, j,t

h

(1.5)

where the parameters are the same explained above. Contagion rates βi, j and βî, ĵ are therefore
described by the Gaussian distribution as will be detailed and exemplified in the section 2.

2 NUMERICAL SIMULATIONS AND DISCUSSION

In this section, we present some scenarios for the disease dissemination regards the discrete
dynamical model (1.1) with the contagious rates and population interaction following the Gaus-
sian distribution (1.3). In this contribution, we mainly present the effects of the variation of the
parameter α on the disease dynamics.

All the simulated scenarios are presented in a domain with 12×12 sites, whose total population
N =∑

n
i=1 Ni, j = 1.000.000. We further assume that the populations in each site (i, j) are the same,

i.e., Ni, j = 1.000.000/144 in every site (i, j). The initial conditions are given by Ii∗, j∗,0 = 200
infected individuals, where (i∗, j∗) represents the center of the domain and Ii, j,0 = 0 for any other
sites. We further assume that the vicinity Vî, ĵ is made up of the 24 radially nearby sites. The time
step-size is h = 0.5.

The contagion rates βi, j and βî, ĵ are proportional to the distance from the site of origin considered
in the redistribution kernel given by the normal two-dimensional distribution 1.3. We adopted the
recovery rate γ = 0.5, considering that the number of days that the person effectively transmits
to others is 5 and after being diagnosed he is isolated we can adopt gamma > 1/5 (remembering
that gamma is inversely proportional to this period). The mortality and birth rates equal to
µ = 0.01. Although this work is motivated by the dissemination of the Covid-19 pandemic,
none of the parameters were calibrated based on reported data, in the simulations that we will
present. Nor will the time scale presented in the simulations be compatible. On the other hand,
the simulation does reflect some hypothetical scenarios that shall be discussed based on real data
set parameters in future contributions.

We assume that the probability that individuals at a given site will interact with the neighborhood
Vî, ĵ in a time interval less than 1 day is proportional to 1.3. In other words, this interaction is
done in such a way that individuals leave their home-site (i, j) for the neighborhood and return
at the end of the same day to their home-site (i, j), and thus, there is no migration.

We begin discussing two simple scenarios for α is constant.

Trends Comput. Appl. Math., 23, N. 1 (2022)
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In the first scenario corresponds to Figure 1, we chose α = 0.1. It means (remember the Gaussian
distribution) that the population interaction is very intense with closed neighborhood sites, but
the interactions are a little intense with populations located in far away sites. We can associate
this scenario in which the diseases start in one population that is concentrated in a given region
(as a capital region), and from there disseminate through other regions (interior). As we can see
from Figure 1, the density of total infected individuals shows peaks that occur more intensely as
time passes. That means that the diseases take some time to spread through the spatial network.
This fact is due to the slow interaction with populations located in more distant sites since we
assuming that the initial infected population is located in only one site (in this simulation at the
center of the domain).
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Figure 1: α = 0.1.

The second scenario corresponds to Figure 2, where we consider α = 1.5. It means (remember
the Gaussian distribution) that the population interaction is very intense through the entire pop-
ulation network (like in a great metropolitan region). In such a scenario, the density of the total
population infected reaches its maximum in the initial times of the diseases as shown in Figure 2.

A final remark related to the scenarios with α constant is that the total population infected peaks
are monotonically increasing for α = 0.1 and decreasing for α = 1.5. However, in the second
case, more than 20% of the population is infected at the same time, what, probably, takes any
health care system (for COVID-19 for example) to collapse.

Now, we torn our attention to the analysis of distinct scenarios on the diseases dynamic produced
by a time dependent width function α(t) = exp(a+b

√
t), for the Gaussian-type kernel (1.3), for

distinct choices of the constants a and b.

Trends Comput. Appl. Math., 23, N. 1 (2022)
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Figure 2: α = 1.5.

In the first hypothetical situation, we assume that we have a rapidly changing scenario from “nor-
mal” to the one with circulation mitigation to contain the diseases spread. Such situation corre-
sponds the a decreasing function α(t) (see Figure 3a for the behaviour α(t) = 0.1−0.9

√
t chosen

for this simulation). In Figure 3b the dynamics of the total infected populations are presented.
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(a) α(t) = exp(0.1−0.9
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(b) Dynamics of the total infected population for the
interaction related to α(t) presented in Figure 3a.

Figure 3

It can be concluded from Figure 3b that the diseases are controlled due to the rapid circula-
tion mitigation, however, the number of infected cases does not go to zero. Furthermore, notice
that for the decreasing chosen as α(t) = exp(0.1− 0.9

√
t) the dynamic of infected population

Trends Comput. Appl. Math., 23, N. 1 (2022)
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presents oscillations in the initial times followed by centralized peaks in later times (Figure 3b).
This fact is related to the spread of disease within the network. (see Figure 4) Note that the
populations located in the sites closest to the central site ((i8, j8)), where the disease started, are
infected first due to the proximity. The velocity of the diseases spread is related to the choice
of α(t), making the peaks of the epidemic in each site take place at different times, with the
central site being the first to reach higher values (Figure 5). In Figure 4 we can see the infected
populations wave spreading for the central site (where we are assuming the initial proportion of
the populations infected) in the direction of the boundaries. The radial shape of the wave is due
to the assumption that we have only one central site with active diseases as the initial conditions
and the radially of the Gaussian distribution. The righter peak of the infected population in Fig-
ure 3b corresponds with the time where the maximum number of sites has its one peaks, which
corresponds Figure 4b in this hypothetical time scale.
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Figure 4: Spatial distribution for infected population in different times according legend and
α(t) = exp(0.1−0.9(

√
t).

The second hypothetical situation we explore in this contribution assumes that the population
interaction is very low (due to some restriction measures like a lockdown) and then increases

Trends Comput. Appl. Math., 23, N. 1 (2022)
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Figure 5: Infected population in different sites for α(t) = exp(0.1−0.9
√

t).

very rapidly. In our simulations we choose the increasing function α(t) (see Figure 6a) for the
behaviour α(t) = −25+ 1.5

√
t) for mimic the situation. In Figure 6b the dynamics of the total

infected populations is presented, where we can observe the existence of one small peak in the
initial times followed by a large peak (with the same magnitude of the scenario shown in Figure 2)
even before the effects of a higher interaction in the network. Figure 7 shows that the higher
peak coincides with the time where the disease is active in all network sub-populations. This
is explained by the interaction between populations that occurs slowly in the initial times and
shows a rapid growth for t > 400 Figure 6a (Second hypothetical situation).
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(b) Total infected population.

Figure 6
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In Figure 7 is represented the spatial distribution in different times of infected population. Note
that, in the time t = 20 (Figure 7a) the disease, is still concentrated in the center but in the time
t = 280 (Figure 7b) this scenario changes drastically corresponding to the highest peak in Figure
( 6b). In the remaining times we emphasize t = 300 (Figure 7c) where the infected population
decreases significantly as can be seen in Figure 6b at referred time and t = 480 (Figure 7d)
where a new peak appears.
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Figure 7: Spatial distribution for infected population in different times according legend and
α(t) = exp(−25+1.5

√
t).

3 CONCLUSIONS AND FUTURE DIRECTIONS

In this contribution we analyze the behavior of diseases spreading in spatially distributed pop-
ulations, assuming the dynamics given by SIR compartmental model with interacting sub-
populations. We assume that the interaction between distinct sub-populations is given by a
Gaussian distribution, with a spatial scale of interaction α . The numerically simulated scenar-
ios pointed to a rich dynamical behavior. In particular, in a scenario where α is a small constant,
which implies a distribution of interaction remains restricted to the closed neighborhood, we ob-

Trends Comput. Appl. Math., 23, N. 1 (2022)
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served multiple waves of infection that are increasing, due to the time it takes for the disease
to spread far away from the site where the diseases started. An opposite phenomenon can be
observed when the interaction distribution is larger (relatively large α). The situation for α as
a function that varies over time is also analyzed presenting results very interesting. The results
can be associated with real situations in which restrictive measures are sometimes imposed or
neglected.

We will pursue the following directions in future works:

• Carrying out the well-posed and stability analysis of the proposed model.

• Calibrate the parameters of the model based on Covid-19 reported data.

• Analyze the model with other types of kernel distributions.
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