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ABSTRACT. Because of the current scenario of the SARS-CoV-2 (COVID-19) pandemic in Brazil, whose
vaccination campaign is in its initial stage, government authorities have pointed towards the complete re-
opening of the economy. And recently, for the in-personal return of classroom teaching in schools. Given
the family relationship, one of the questions that remains without an answer is: what are the consequences
of the schools’ reopening on the dissemination of COVID-19? The purpose of this work is to analyze a
variant of the compartmental SIRD (Susceptible, Infected, Recovered, Social Distancing) model in a struc-
tured, interacting age population representing six age groups, from the basic education age to the elderly.
We present a complete analysis of the well-posedness of the proposed mathematical model. We discuss
distinct disease spreading scenarios based on observations of the mathematical behavior of the proposed
dynamics. Moreover, we present the existence of the stationary points in terms of the parameters of the
model and the number of infected age groups. Finally, we present different numerical simulations of the
predicted scenarios by the model. Those numerical realizations support the conclusion that an early school
reopening, resulting in the decreasing social isolation of young people, causes the infection curve to grow
considerably, even for other age groups.

Keywords: COVID-19, SARS-CoV-2, SIRQ model, multi-population.

1 INTRODUCTION

The SARS-CoV-2 virus, which causes COVID-19, was first reported in Wuhan (Hubei, China)
at the end of 2019. From there it spread rapidly and became a global pandemic [15, 19]. This
situation, unprecedented in the recent history of humanity, requires a large part of the scientific
community’s efforts to collect information, generate, and test evidence that allows us to plan and
execute prevention, control, and treatment strategies for mitigating the virus’ spread. Despite the
effort, COVID-19 caused an enormous impact on economic and social behavior, besides millions
of deaths related to the pandemic worldwide [12].
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656 A MODEL OF SOCIAL DISTANCING FOR INTERACTING AGE-DISTRIBUTED MULTI-POPULATIONS

Historically, mathematical models have proved to be important tools for studying and predicting
the dynamics of many epidemics. Such models have been the subject of research since Bernoulli’s
pioneering work [5]. It was the first model that divided the total population into compartments,
[2]. The same importance of mathematical models becomes evident within the turn-over direction
of the UK government’s decision to prevent the COVID-19 spread [18].

Since COVID-19 has a high level of contagious infection and respiratory complications, it rapidly
spreads to a significant rate of hospitalization with high mortality, particularly among those re-
quiring ventilation [17]. In the early stages of the pandemic, many governmental authorities
strongly argued in favor of vertical social isolation, maintaining only the most vulnerable (the
elderly among them) in social isolation. However, facts as social conditions impose the necessity
of inter-generational contact [18], causing the health system capacity limit to collapse.

Therefore, the absence of specific antiviral prophylaxis [1] or vaccines imposes the only re-
maining alternative to efficaciously control the SARS-CoV-2 virus spread: non-pharmaceutical
intervention. That consists of physical distancing measures allied with strategies of person-to-
person preventive transmission like wearing a mask, banning collective gatherings [6, 7], among
others.

This contribution aims to place a new piece in the puzzle of COVID-19 spread: understanding
the effect of the in-personal return of schools on the propagation dynamics of COVID-19 among
the population. Even if children are not a high-risk group, as the schools reopen, the transmission
of the virus could take place among students, their kin, and school staff [16].

In this scenario, we assume that the dynamics are governed by a variation of the compartmental
SIRD (S-susceptible, I-infected or infectious, R-recovered, and D-social distancing) model, with
an interacting multi-population divided by age range. As a measure for controlling the spread
of the virus (see Section 2 for details), the social distancing compartment is assumed to include
voluntarily healthy individuals from each of the social groups considered in the analysis. It is
worth mentioning that the proposed and analyzed model is an extension of the approach proposed
in [13], including the social distance compartment.

Main contributions and manuscript organization: In Section 2, we present the age-
interacting compartmental SIR-like multi-population model analyzed in this contribution. We
present a complete analysis of the well-posedness of the model in Subsection 2.1. Moreover, we
discuss distinct disease spreading scenarios based on observations of the mathematical behavior
of the proposed dynamics.

We also present a result of existence for the stationary points in terms of the parameters of the
model and the number of infected age groups in Subsection 2.2. In Section 3, we present different
numerical simulations of the predicted scenarios by the model. Those numerical realizations
collaborate with the conclusion that an early school reopening causes the infection curve to grow
considerably, even for other age groups. Finally, in Section 4, we present some conclusions and
further directions for this contribution.

Trends Comput. Appl. Math., 23, N. 4 (2022)
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2 SIRD MODEL FOR AN AGE DISTRIBUTED MULTI-POPULATION INTERACT-
ING

In this contribution, we start from the assumption that we have a constant total population of size
NT , that is divided into n age sub-populations of Ni individuals in each age group i, such that
NT = ∑

n
i=1 Ni. Furthermore, we assume that the interaction dynamics between the compartments

of any of the different age groups is governed by the initial value problem (PVI)

Ṡi(t) = µiNi −µiSi(t)−Si(t)∑
n
j=1 βi jI j(t)− γiSi(t)+θiDi(t)

İi(t) = Si(t)∑
n
j=1 βi jI j(t)− (µi +αi)Ii(t)

Ṙi(t) = αiIi(t)−µiRi(t)
Ḋi(t) = γiSi(t)− (θi +µi)Di(t),

(2.1)

with initial conditions (Si(0), Ii(0),Ri(0),Di(0))T ∈ R4
+ := {(Si, Ii,Ri,Di)

T ∈ R4 : Si ≥ 0, Ii ≥
0,Ri ≥ 0,Di ≥ 0}, for i ∈ {1, · · · ,n}. The parameters αi > 0 and γi > 0 are, respectively, the
inverse of the time that individuals stay in the Ii compartment and the transition rate for social
distancing. Parameters βi j > 0 are the rate of contact between individuals in the compartments
Si and I j, for all population age groups i, j ∈ {1, · · · ,n}, respectively. θi represents the rates of
individuals leaving the social distance compartment Di and µi > 0 represents the mortality/birth
rate that are assumed to be the same, for all i ∈ {1, · · · ,n}. We also assume that the number of
people Ni in each age sub-population (i) remains constant, for all i ∈ {1, · · · ,n}.

2.1 Theoretical analysis

In this subsection, we address some important theoretical results regarding the proposed model.
We start with the well-posedness.

Theorem 2.1 (Well-posedness and consistency). Assume that the system (2.1) is such that the
initial conditions are in R4

+, for all i ∈ {1, · · · ,n}. Then there exists a unique solution ui :=
(Si, Ii,Ri,Qi)

T ∈C1([0,∞[,R4
+), for all i ∈ {1, · · · ,n}, which depends continuously on the initial

data and parameters of the model.

Proof. The existence of a unique solution in a bounded interval follows from the Lipschitz
continuity of the Jacobean on the right-hand side of (2.1) and the classical results on ODE’s, e.g.,
[8]. Since the total population is constant, it follows that each solution coordinate is uniformly
bounded. This means that the solution can be extended to [0,+∞[, since the right-hand side
satisfies the Carathéodory conditions, e.g., [8]. The consistency of the solutions in R4

+ follows
from the standard ODE theory results, e.g., [8]. □

Next, we address some interesting conclusions based on the proposed model (2.1).

First, notice that Theorem 2.1 implies in, whenever the initial conditions are non-negative, each
coordinate of the unique solution of model (2.1), (Si(t), Ii(t),Ri(t),Di(t)), are non-negative, for

Trends Comput. Appl. Math., 23, N. 4 (2022)
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all i = 1, · · · ,n. Since there is no reinfection in the model (2.1), it is reasonable to assume that
Ri(0) = 0. Then, from the third equation in (2.1) and the integrating factor method, we get

Ri(t) = αi

∫ t

0
eµi(s−t)Ii(s)ds . (2.2)

It means that the number of recovered people is proportional to the cumulative number of infected
individuals in each age class i.

Moreover, assuming that the number of susceptible individuals of any age-class maintaining so-
cial distance also decreases during the evolution of the epidemic (that is a reasonable hypothesis),
i.e. Ḋi(t)≤ 0, we get as a consequence of the last equation in (2.1) that

Di(t)≥
γi

µi +θi
Si(t) . (2.3)

Hence, if the basic reproduction number1 of the population i, R i
0, is such that R i

0 > 1, then we get
that Ii(t) start increasing, e.g., [9, 10, 11]. So is Ri(t) from (2.2). Given that the total population
Ni is constant, it follows from the first equation in (2.1) and (2.3) that Si(t) is non-increasing.
Therefore, for t large enough Ii(t) shall be decreasing. In particular, Ii(t)< ∞, for all t ≥ 0.

Therefore, the above-mentioned properties and the smoothness of Ii(t) (as a result of the The-
orem 2.1), we conclude that the trajectory of the solution for Ii(t) has a concave hump with
extremes in Ii(0) and Ii(∞) = 0 (because at the end all the population shall be in Ri class). Hence,
Ii(t) attains a maximum at a point t i

p ∈]0,+∞[, known as the turning point. Assume that at this
point of maximum Ii(t i

p) ̸= 0 for all i ∈ {1, · · · ,n} (that is true if Ii(0) > 0 as a consequence of
the above discussed properties). From the maximality of t i

p and the smoothness of Ii(t), we have
İi(t i

p) = 0. Consequently, it follows from the second equation in (2.1) that

Si(t i
p) =

(µi +αi)

βii

 1

1+
n
∑
j ̸=i

βi jI j(t i
p)

βiiIi(t i
p)

 , for i ∈ {1, · · · ,n} . (2.4)

The analysis of equation (2.4) reveals some scenarios whose consequences are worth exploring:

i) If there is no interaction between the different age groups, that is, if β i j = 0 for all j ̸= i,
then the number of susceptible at the moment t i

p is given by Si(t i
p) =

(µi+αi)
βii

, for any i =
1, · · · ,n .

ii) On the other hand, if there is interaction between distinct age populations ( that means
βi j ̸= 0 for j ̸= i), Si(t i

p) decrease (since the denominator in (2.4) increases), and therefore
I(t i

p) increases.

1The quantity that express the expected number of cases directly generated by one case in a population and withing the
selected population, at the initial phase of the infection [9, 10, 11].

Trends Comput. Appl. Math., 23, N. 4 (2022)
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iii) It follows from i) and ii) that the only way to keep Si(t i
p) at its highest possible value is

the scenario where there is no interaction between populations. Therefore, no matter the
reopening of schools, it will imply an increase in the number of infected cases.

iv) Assume the scenario where the in-personal returns of school are such that, a few days
a week, a proportion of students return to class and stay home the rest of the week. In
this situation, we can expect that the parameter βii of the specific population will increase
(considering the greater probability of contact with an infected person). On the other hand,
the fact that students stay home a few days a week, makes the interaction with family
members (in general with elderly people) also increase proportionately, thereby the term
in the denominator of (2.4) is bigger than 1. As a consequence, the number of infected
people increases.

v) Finely, it follows from (2.3 and from (2.4) that Di(t i
p) also decreases with respect to the

number of interactions with other populations j ̸= i (that is, with βi j ̸= 0).

The above-mentioned scenarios will be numerically addressed in Section 3. In particular,
item i) and ii) corresponds the simulations in Figure (2) and Figure (3), respectively. Item iii)
corresponds to Figure (4), Figure (5) and Figure (6).

2.2 Existence of equilibrium points

In this subsection, we present the existence of equilibrium points for the model (2.1). It is in-
teresting to note that such equilibrium points depend on the model parameters as well as the
interaction between distinct age populations.

It follows from (2.2) that it is enough to analyze the existence of the equilibrium points
(S∗i , I

∗
i ,D

∗
i ) for the reduced model, which consists of the first, second, and fourth equation in (2.1).

From the fourth equation we get:

D∗
i =

γi

θi +µi
S∗i . (2.5)

Replacing (2.5) in the first equations of the model (2.1) and isolating S∗i , we get

S∗i =
µiNi(θi +µi)

(θi +µi)(µi + γi)−θiγi +(θi +µi)∑
n
j=1 βi jI∗j

. (2.6)

Finally, by substituting (2.6) in the model’s (2.1) second equations, we conclude that any
equilibrium I∗i is given by the roots of the second-degree polynomial,

(I∗i )
2 +bI∗i + c = 0 , (2.7)

where

b =
µi

βii

[
1− βiiNi

(αi +µi)
+

γi

(θi +µi)

]
+

(
1

αi +µi

) n

∑
j=1 , j ̸=i

βi j

βii
I∗j

Trends Comput. Appl. Math., 23, N. 4 (2022)
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and

c =− µiNi

(αi +µi)

n

∑
j=1 , j ̸=i

βi j

βii
I∗j

Given that we are analyzing a situation that resembles the real-life scenario in which
model’s (2.1) initial conditions for the are positive, and thus the model’s (2.1) solution is also
positive from Theorem 2.1, it follows that the equilibrium points I∗i are the non-negative roots
of (2.7). In this context, we have:

Theorem 2.2 (Existence of equilibrium points). Let the initial conditions for the model (2.1)
be non-negative. Then there are four possible non-negative roots for (2.7). They are:

i) disease-free equilibrium point I∗i = 0, for all i ∈ {1, · · · ,n}.

ii) I∗i = µi
βii

[
1− βiiNi

(αi+µi)
+ γi

(θi+µi)

]
, subject to βi j = 0 for j ̸= i and b > 0.

iii) Whenever c ̸= 0 and b > 0, then we have I∗i = −b+
√

b2−4c
2 .

iv) Whenever c ̸= 0 and b < 0, then we have I∗i = −b+
√

b2−4c
2 .

Proof. Given the assumptions, Theorem 2.1 implies that the number of infected individuals in
any i-age sub-population is non-negative. Since all the parameters in the model( 2.1) are positive,
it follows that c ≤ 0. Hence b2 −4c ≥ 0. Implying the existence of non-negative roots for (2.7).

Assume that βi j = 0 for all j ̸= i. Therefore, we are in the scenario that c = 0. Hence, it
follows that the possible roots of (2.7) satisfies I∗i = 0 and the assertion i) is proved, or
I∗i = b. Therefore, b shall be positive as assumed. Since βi, j = 0 for all j ̸= i, it follows that

I∗i = µi
βii

[
1− βiiNi

(αi+µi)
+ γi

(θi+µi)

]
, and then the assertion ii) is concluded.

Now, assertions iii) and iv) follow directly from c ̸= 0 and the signal of b. □

The assertions in the Theorem 2.2 deserve some remarks.

• The assumption of c = 0 used to derive the assertions i)–ii) in the Theorem 2.2 implies
that all neighborhood age populations j ̸= i are free of infection (I∗j = 0 for any j ̸= i), and
thus we have the disease-free equilibrium point. Or, alternatively, βi j = 0 hence, there is
no interaction between distinct age populations.

• For the free equilibrium point I∗i = 0 as in Theorem 2.2 assertion i), it follows from (2.5)
and (2.6) that

S∗i =
θi +µi

θi + γi +µi
Ni D∗

i =
γi

θi + γi +µi
Ni ,

resulting in D∗
i +S∗i = Ni, as expected.

Trends Comput. Appl. Math., 23, N. 4 (2022)
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• Assuming a non-interaction aging populations, i.e., with βi j = 0 for all j ̸= i and
Theorem 2.2 assertion ii) holds, then

ζi := 1− βii

αi +µi
Ni +

γi

θi +µi
> 0 .

Note that, in this scenario I∗i = µi
βii

ζi.

• Since c ̸= 0, assertions iii) and iv) in Theorem 2.2 holds true when the disease is active in
at least one aging population j ̸= i. In particular, assertion iii) holds when

n

∑
j=1 , j ̸=i

βi j

βii
I∗j >

µi(αi +µi)

βii

[
βii

(αi +µi)
Ni −1− γi

(θi +µi)

]
,

and hence, the number of infected neighborhoods is under-bounded. On the other hand, if
assertion iv) holds, then the number of infected neighborhoods has an upper-bound, i.e.,

n

∑
j=1 , j ̸=i

βi j

βii
I∗j <

µi(αi +µi)

βii

[
1− βii

(αi +µi)
Ni +

γi

(θi +µi)

]
.

The stability analysis of the stationary points obtained in the Theorem 2.2 will be addressed in
future contributions.

3 NUMERICAL RESULTS AND DISCUSSION

In this section, we will investigate with some simulations and discussions the in-personal re-
turns to schools in the current scenario where the COVID-19 transmission is still active in many
countries, in particular in Brazil. In this contribution, we do not intend to compare the simulated
scenarios with any kind of real data, whether it is available or not.

It is well known what has been going on since March of 2020 in Brazil. However, we investigate
a simplification of this scenario by assuming that there are infected individuals and that in the
whole population the virus is transmissible. Moreover, the opening of schools coincides with the
time t = 0. Although we recognize that this is not a realistic scenario, it can still demonstrate
quantitatively the impact of age group interaction.

We assume that the whole population is divided by age as follows: Kindergarten (aging from
0 to 5 years old) corresponds to the i = 1 sub-population; primary school I (aging from 6 to
10 years old) corresponds to the i = 2 sub-population, primary school II (aging from 11 to 14
years old) corresponds to the i = 3 sub-population; secondary school (aging from 15 to 17 years
old) corresponds to the i = 4 sub-population; working for the population (aging from 18 to 64
years old) corresponds to the i = 5 sub-population; and the elderly sub-population (age more
than 64 years old) corresponds to the i = 6 sub-population. As a result, the system (2.1) will be
numerically implemented with n = 6. In all the numerical experiments presented in this section,
the solution of (2.1) is approximated by a Runge-Kutta type strategy2 [3], with step-size h =

10−1.

2We have used the ODE45 in MATLAB.

Trends Comput. Appl. Math., 23, N. 4 (2022)
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First setup: In this setup, we assume that all the sup-populations are identical 3, i.e., Ni =
NT
6 . The

parameters µi = 0.01 (this assumption shall be interpreted as that there is no loss of individuals in
each sup-population), αi = 0.07 and θi = 0.5, for i = 1, · · · ,6. The infection rates βii are the same
of the ones considered in [14], given, respectively, by β11 = β22 = β33 = β44 = β55 = β66 = 0.59.
The rates βi j for j ̸= i are chosen according to the age difference, i.e., β12 = β21 = β23 = β32 =

β34 = β43 = β45 = β54 = β56 = β65 = 0.59/2;, β13 = β24 = β31 = β35 = β42 = β46 = β53 =

β64 = 0.59/3, β14 = β25 = β36 = β41 = β52 = β63 = 0.59/4, β15 = β26 = β51 = β26 = 0.59/5
and β16 = β61 = 0.59/6.

For simplicity, we assume that the working population is the one that starts with a proportion of
individuals infected. It is reflected in the initial conditions given by

S⃗(0) =
1⃗
6
− I⃗(0)− D⃗(0)

I⃗(0) = (0,0,0,0,0.01,0)T (3.1)

R⃗(0) = 0⃗

D⃗(0) = (0.0688,0.0688,0.0768,0.0768,0.0272,0.064)T ,

where, S⃗(0) = (S1(0),S2(0),S3(0),S4(0),S5(0),S6(0))T , 1⃗
6 is a vector with all the

coordinates constants and equal to 1
6 , I⃗(0) = (I1(0), I2(0), I3(0), I4(0), I5(0), I6(0))T ,

R⃗(0) = (R1(0),R2(0),R3(0),R4(0),R5(0),R6(0))T , 0⃗ is the null vector and D⃗(0) =

(D1(0),D2(0),D3(0),D4(0),D5(0),D6(0))T , respectively.

The initial conditions (3.1) do not proportionally reflect the population behavior patterns of the
Brazilian state of Rio Grande do Sul, as can be collected from the Epicovid19 data set [4]. On
the other hand, the patterns of social distancing and routine activities of the aging groups are
described by the parameters γi, for i = 1, · · · ,6. Groups between 20 and 59 years old report being
less isolated or reporting going out every day, while other aging groups seem to be well protected,
staying at home all day or going out just for essentials, e.g., [4]. Hence, in the simulation we
consider γ1 = γ2 = γ6 = 0.4, γ3 = γ4 = 0.3 and γ5 = 0.1.

Figure 1 depicts the dynamic of each compartment of the i sup-populations for i = 1 · · · ,6 (cor-
responding to the sub-populations that interact at schools during a reopening). Because the infec-
tion rate βii and the contact rate βi j are assumed to be symmetric, we can see that the behavioral
dynamics of each compartment in those sub-populations i = 1, · · · ,4 are nearly the same (which
is consistent with the results in Theorem 2.1). In the dynamics of the working and elderly pop-
ulation, we can see how the social distancing classes D5(t) and D6(t) have different behaviors.
The working population does not maintain a social distance, while the elderly population is the
one that most manages to maintain it. The similarity of behavior is due to the fact that in our
simulations, the parameter choices are similar.

3Identical sized sup-populations may appear unrealistic, but this is mitigated in part by the fact that the infection rate (βii)
is the same for all i = 1,cdots,6.

Trends Comput. Appl. Math., 23, N. 4 (2022)
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Figure 1: Dynamic of each compartment of the i sup-populations for i = 1 · · · ,6, with initial
conditions and parameters as in the first setup.

The dynamics of the total population S(t) = ∑
6
i=1 Si(t), I(t) = ∑

6
i=1 Ii(t), R(t) = ∑

6
i=1 Ri(t) and

D(t) = ∑
6
i=1 Di(t), are shown in Figure 2, with the parameters and initial condition presented in

the first setup. As shown in Figure 2, there is a rapid decrease in the compartment D, followed
by a transition to the compartment S, and then an increase in the infected population I.
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Figure 2: The behavior of the total population without the schools reopening.
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Figure 3: The behavior of the total population with the schools reopening. Simulated scenario
with the new set of parameters γ1 = γ2 = γ3 = γ4 = 0 and γ5 = 0.1 and γ6 = 0.4 that corresponds
to a relaxation on the social distance proportion of the population Di, respectively.

First setup (with schools reopening strategies): In the simulations that follow, we change the pa-
rameter γi, for i = 1, · · · ,4 that corresponds to a relaxation in the population’s social distance pro-
portion Di that mimics scenarios where the schools are reopened, while the remaining parameters
and initial conditions are kipped as in the first setup.
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Figure 3 shows the dynamics behavior of the total population S(t) = ∑
6
i=1 Si(t), I(t) = ∑

6
i=1 Ii(t),

R(t) = ∑
6
i=1 Ri(t) and D(t) = ∑

6
i=1 Di(t), where γ1 = γ2 = γ3 = γ4 = 0.

When comparing the dynamical behaviors in the scenario with reopening schools in Figure 3 to
the one with constant social distance in Figure 2, it is possible to see drops in the total population
in social distancing (compartments Di) and corresponding increases in the susceptible proportion
of the population (compartments Si), as well as a significant increase in the proportion of the
infected population (compartments Ii). Furthermore, there is a shift in the infection peak.

In Figure 4 we present the dynamics of the proportional of the total infected population in a
scenario where schools are reopened in a staggered way. We use the following scenario: First,
only the kindergarten students attend school (this corresponds to setting γ1 = 0 while the remain-
ing parameters remain fixed as shown in the first setup). Then, the primary school I students
attend (which corresponds to taking γ1 = γ2 = 0 while holding the other parameters as in the
first setup). Then, the primary school II also goes to school (it corresponds to taking γi = 0 for
i = 1,2,3 while the remaining parameters are kept as the ones presented in the first setup). Fi-
nally, secondary school students also attend school (it corresponds to taking γi = 0 for i ≤ 4 while
the remaining parameters are kept fixed as the ones presented in the first setup). As it can be seen
in Figure 4, the total proportion of the population infected is monotonically increasing within the
staggered school reopening.
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Figure 4: The behavior of the I(t) = ∑
6
i=1 Ii(t) population with the schools staggered reopening.

In Figure 5, we show the evolution of the elder’s infection proportion of the population ( com-
partment I6 in the model (2.1)) in the scenario of staggered school reopening discussed above.
Notice that its dynamics are also monotonically increasing within the staggered school reopen-
ing due to the ”in-home” contact with the school-age population as proposed by the analyzed
model (2.1).
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Figure 5: The proportion of the infected people in the elderly population (compartment I6(t)
dynamics) with the scenario of staggered school reopening.
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Figure 6: Dynamics of the total infected curve I(t) = ∑
6
i=1 Ii(t) with the scenario of social dis-

tancing and the staggered school reopening with 25, 50, and 75 % of occupation capacity.

Next, we show a scenario of the partial return of students to school. Figure 6 presents the effect
on the total infected curves of the school community’s considering a partial in-personal return
with 25 %, 50 %, and 75 % of its population. For the simulations only change the parameters
γi, respectively by, γ1 = γ2 = 0.3 and γ3 = γ4 = 0.225 for the scenario of 25 % of returning;
γ1 = γ2 = 0.2 and γ3 = γ4 = 0.15 in the scenario with 50 % returning and γ1 = γ2 = 0.1 and
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Figure 7: Impact on the total infected population I(t) due to a staggered in-person return to
schools with distinct sub-population densities.

γ3 = γ4 = 0.075 for the scenario with a return to 75 % of the school community, while the
remaining parameters and initial conditions are the same as the ones presented in the first setup.

It follows from the simulations in Figure 6 that, even in the scenario 25% of the in-personal
school returning, there are 20 % of the infected population at the peak of infection.

Second setup: We assume that the densities of sub-populations are such that N1 = N2 = N3 =

N4 = 0.08NT , N5 = 0.48NT and N6 = 0.2NT . The parameters {µi,αi,θi}6
i=1 are the same as in

the first setup, and γi are chosen as in the first setup with schools’ reopening strategies.

The infection rates in each sub-populations are given by β11 = β22 = β33 = β44 = 0.3, β55 = 0.2
and β66 = 0.1. The infection rates between distinct sub-populations are chosen following the
idea that: closed aging at school sub-populations have a higher probability of getting together,
hence β12 = β21 = β23 = β32 = β34 = β43 = 0.3/2, β13 = β31 = β24 = β42 = β14 = β41 = 0.1; the
interaction between at-school sub-populations and the working class (where fathers belong) is
higher than other inter-interactions such that β15 = β51 = β25 = β52 = β35 = β53 = β45 = β54 =

0.7; young people interact with the elderly more than adolescents, hence β16 = β61 = β26 = β62 =
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0.5, β36 = β63 = β46 = β64 = 0.3, and finely, the interaction between the working aging group
and elderly are assumed to be β56 = β65 = 0.3

The initial conditions are

S⃗(0) = (N1,N2,N3,N4,N5,N6)
T − I⃗(0)− D⃗(0)

I⃗(0) = (0,0,0,0,0.01,0)T , R⃗(0) = 0⃗ (3.2)

D⃗(0) = (0.65N1,0.65N2,0.5N3,0.5N4,0.25N5,0.65N6)
T ,

implying that the diseases starts in the working sub-population. Here, S⃗(0), I⃗, R⃗(0), D⃗(0) have the
same meaning as in the first setup.

Figure 7 depicts the effect of staggered return of students to schools of each age group i =
1, · · · ,4, on the total infected population. Figure 8 shows the effect of the in-personal return to
schools of each aging sub-population in the infected on each sub-population, respectively.

Figures 7-8 show that the gradually increasing number of people returning to schools in each sub-
population implies a monotonically increasing effect in the infected population and, respectively,
in the sub-population, with the peak of infection ranging from 20 to 40 days before schools
reopen.

It follows from the simulations presented above that school re-openings should be considered
with care.

4 CONCLUSIONS AND FUTURE DIRECTIONS

The results presented in this contribution illustrate the potential impact of the social distancing re-
laxing of the courses of the COVID-19 pandemic. Our findings show that even partial relaxations
in this important non-pharmaceutical intervention, such as partial school reopening, considerably
increase the proportional number of infected people. It also shows that a vertical social distanc-
ing strategy defended by some governmental authorities might have a devastating impact on the
more vulnerable classes, given the inter-aging social interaction.

Moreover, the simulated scenarios show that, in a country like Brazil, where inter-generational
contact is very large, even the release of the most distant age group of the elderly causes the
infection curve of the elderly to increase. Since the elderly are, by now, most vulnerable in
the sense that COVID-19 has dangerous consequences, such school returning might imply an
increasing mortality rate among them. Therefore, school re-openings should be considered with
care.
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Figure 8: Impact of a staggered in-person return to schools in the infected sub-population Ii(t),
i = 1, · · · ,6, with distinct sub-population densities.
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Our next steps regarding the approach presented in this contribution will be:

• Derive the full stability analysis for the model (2.1).

• Simulate numerical scenarios for parameter choices that satisfy the assertions of
Theorem 2.2.

• Analyze more numerical scenarios with distinct population densities and parameters that
simulate distinct school reopening strategies.

• Extend the model and analysis to include time-dependent parameters.

• Calibrate the model parameters using real data.
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