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ABSTRACT. The motion of a body can be expressed relative to the present configuration of the body,
known as the relative motion description, besides the classical Lagrangian and the Eulerian descriptions.
When the time increment from the present state is small enough, the nonlinear constitutive equations can
be linearized relative to the present state so that the resulting system of boundary value problems becomes
linear. This formulation is based on the well-known “small-on-large” idea, and can be implemented for
solving problems with large deformation in successive incremental manner. In fact, the proposed method is
a process of repeated applications of the well-known “small deformation superposed on finite deformation”
in the literature. This article presents these ideas applied to thermoelastic materials with a brief comment
on the exploitation of entropy principle in general. Some applications of such a formulation in numerical
simulations are briefly reviewed and a numerical result is shown.

Keywords: relative lagrangian formulation, thermoelastic solid, small on large deformation, successive
linear approximation, boundary value problem.

1 INTRODUCTION

In modern continuum thermodynamics, to deduce thermodynamic restrictions on constitutive
functions two essential approaches are widely employed, i.e., Coleman-Noll procedure [3] and
Müller-Liu procedure [8]. The two procedures are based on different assumptions, for which the
latter is more general than the former, so that the resulting restrictions may not be identical in
general. Nevertheless, it turns out that they do give the same results for most usual materials in
practical application, such as elastic and viscous heat-conducting fluids, isotropic thermoelastic
and thermoviscoelastic solids. However, it is not so for thermoelastic materials in general, for
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610 RELATIVE LAGRANGIAN FORMULATION OF FINITE THERMOELASTICITY

which the employment of Coleman-Noll and Müller-Liu procedures in analyzing the entropy
principle will be briefly discussed.

The governing system for a material body is usually formulated in Lagrangian or Eulerian do-
mains, and for a solid body, the Lagrangian formulation relative to some reference state is more
convenient.

Theoretically, any state can be chosen as a reference state for a Lagrangian description. Indeed,
with the real motion of the body at the present time as the reference state is usually known as
the relative motion description (see for example, [8, 23]). It is of interest to consider a formula-
tion with relative motion description for solid bodies in general. We shall refer this as relative
Lagrangian formulation in contrast to (total) Lagrangian formulation with respect to a fixed
reference state.

By doing so, when the time increment from the present state is small enough, it is then possible to
linearize the constitutive equation relative to the present state so that the governing equation of the
problem becomes linear partial differential equation for small deformation. This idea is similar
to the well-known problem of small deformation superposed on finite deformation (small-on-
large) in the literature [5]. To be more specific, thermoelastic material bodies will be considered
in details. It constitutes a straight generalization of the relative Lagrangian formulation of elastic
bodies in [12].

We can then propose a linear algorithm for large deformation based on relative Lagrangian for-
mulation, by building up successive small incremental deformation problem at every time step
in the deformation process. Roughly speaking, at each time step, the constitutive function is cal-
culated at the present state of deformation which will be regarded as the reference configuration
for the next state, and assuming the deformation to the next state is small, the constitutive func-
tion and the partial differential equation can be linearized. In this manner, it becomes a linear
problem at each time step from one state to the next state successively with small deformations.
This will be referred to as the successive linear approximation. The application of the successive
linear approximation for a Mooney-Rivlin thermoelastic material is presented in detail. It is also
presented the numerical result of a finite deformation problem with temperature variation by the
finite element method.

This article is divided as follows: Section 2 presents the basic concepts of Thermodynamics of
elastic materials necessary to obtain the balance equations in Lagrangian description; Section
3 addresses the concept of relative motion description as a preparation for Section 4 which, in
fact, presents the Relative Lagrangian formulation of the problems considering a Mooney-Rivlin
thermoelastic material; Section 5 presents some comments on the SLA; Section 6 presents the
numerical result of a finite strain problem subject to temperature variation by the finite element
method and, finally, Section 7 presents the final conclusions.

Trends Comput. Appl. Math., 22, N. 4 (2021)
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2 THERMODYNAMICS OF ELASTIC MATERIALS

Let κ0 be a fixed reference configuration of the body B. For X ∈ κ0(B) and time t ∈ IR, we
consider the basic fields of a material body, the density ρ(X , t), the motion x = χ(X , t) and the
temperature θ(X , t).

2.1 Governing system of equations

The equations of balance of mass, linear momentum and the internal energy are given by

ρ̇ +ρ div ẋ = 0,

ρ ẍ−divT = ρ bbb,

ρ ε̇ +divqqq−T ·grad ẋ = ρ r,

(2.1)

where bbb is the external body force, r is the external energy supply, T is the Cauchy stress tensor,
qqq is heat flux and ε is the internal energy density. The equations are stated in Eulerian description,
in which the divergence and the gradient operators are relative to the deformed configuration at
time t.

2.2 Constitutive equations

For thermoelastic bodies, the constitutive equations for the Cauchy stress tensor, the heat flux
vector and the internal energy density can be expressed respectively as

T = T (F,θ ,ggg), qqq = qqq(F,θ ,ggg), ε = ε(F,θ ,ggg), (2.2)

where F = ∇X x and ggg = ∇X θ are the deformation gradient and the temperature gradient with
respect to the fixed reference configuration κ0.

The governing system for the basic fields consists of the balance laws (2.1) together with the
constitutive equations (2.2) for a particular class of material bodies. Any solution of the governing
system is called a thermodynamic process.

2.3 Entropy principle

In the framework of continuum mechanics, for a mathematical formulation of a physical theory of
material bodies, there are some universal restrictions, among them, the entropy principle, which
states that any thermodynamic process must satisfy the entropy inequality,

ρ η̇ +divΦ−ρ s≥ 0, (2.3)

where η is the entropy density, Φ is the entropy flux and s is the entropy supply.

Motivated by classical thermostatics, it is often assumed that

Φ =
1
θ

qqq, s =
1
θ

r, (2.4)

Trends Comput. Appl. Math., 22, N. 4 (2021)
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612 RELATIVE LAGRANGIAN FORMULATION OF FINITE THERMOELASTICITY

and the entropy inequality (2.3) becomes

ρ η̇ +div
(qqq

θ

)
−ρ

( r
θ

)
≥ 0, (2.5)

known as Clausius–Duhem inequality.

Since the balance laws are universal for any material bodies, the entropy principle requirement ef-
fectively places severe restrictions on the constitutive equations of a proposed material model so
that any thermodynamic process would satisfy the entropy inequality accordingly. Consequently,
the exploitation of such restrictions is the essential objective of formulating a thermodynamic
theory of any material model.

Such general thermodynamic restrictions for thermoelastic material bodies can be stated in the
following proposition (see [3, 6, 8, 9]):

Proposition 1. For thermoelastic material bodies, the Cauchy stress, the internal energy and the
entropy are related to the free energy function ψ = ψ(F,θ) by

T = ρ
∂ψ

∂F
FT , ε = ψ−θ

∂ψ

∂θ
, η =−∂ψ

∂θ
, (2.6)

which characterizes the thermoelastic bodies as hyperelastic. Moreover, the heat flux qqq =

qqq(F,θ ,ggg) and the entropy flux satisfy

qqq ·ggg≤ 0, Φ =
1
θ

qqq. (2.7)

Therefore, as a consequence of the entropy principle requirement, the general constitutive equa-
tions of the stress, the internal energy and the entropy for thermoelastic bodies are independent
of the temperature gradient,

T = T (F,θ), ε = ε(F,θ), η = η(F,θ). (2.8)

Moreover, owing to (2.6), they satisfy the Gibb’s relation,

dη =
1
θ

(
dε− 1

ρ
T F−T ·dF

)
.

From this relation, we can write

ε̇ = θη̇ +
1
ρ

T · ḞF−1,

and since grad ẋ = ḞF−1, the energy equation (2.1)3 can be rewritten as

ρθ η̇ +divqqq = ρr, (2.9)

which is a convenient form of the energy equation for thermoelastic bodies.

Trends Comput. Appl. Math., 22, N. 4 (2021)
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2.4 Remarks on the exploitation of the entropy principle

Exploitation of entropy principle based on the Clausius-Duhem inequality (2.5) has been widely
adopted in the development of modern continuum thermodynamics following the Coleman-Noll
procedure ( [3, 6, 8]). In particular, the general restrictions for elastic materials are stated in the
above Proposition.

However, the main assumptions (2.4) for the Clausius–Duhem inequality might seem to be plau-
sible in most classical theories of continuum mechanics, are not particularly well motivated for
materials in general as pointed out by Müller [17]. To deal with the exploitation based on the
general entropy inequality (2.3), the Müller-Liu procedure ( [8, 9, 10]) by the use of Lagrange
multipliers [7] can be employed.

For isotropic thermoelastic materials [9], both the Müller-Liu procedure and the Coleman-Noll
procedure do lead to the same Proposition above. However, for thermoelastic materials in general,
it has been noted that such results cannot be proved mathematically without some additional
assumptions.

Indeed, for transversely isotropic thermoelastic materials [10], it has been proved that the classi-
cal flux relation does not hold, i.e., the entropy flux may not be proportional to the heat flux and
the relation (2.7) does not hold. Nevertheless, it has also been proved that relations (2.6) remain
valid. In other words, the transversely isotropic thermoelastic materials are still being hyperelas-
tic, irrespective of whether the classical entropy flux relation is valid or not. To what extent that a
thermoelastic material body is hyperelastic based on the general entropy inequality (2.3) remains
an open question.

2.5 Balance equations in Lagrangian description

For solid bodies, boundary value problems are usually formulated relative to some reference con-
figuration. Although in practice, the reference configuration is chosen as the initial configuration,
usually the preferred configuration for which the constitutive equations of the particular mate-
rial class are given, it is by no means necessary. The Lagrangian formulation of boundary value
problems can be formulated with respect to any reference configuration, in particular, even the
present configuration of the body can be chosen if one so desires.

Let κ be an arbitrary reference configuration of the body B. The balance equations of mass,
linear momentum and energy, with domain in κ(B)× IR, can be written as

ρκ = ρ detFκ ,

ρκ ẍ−divκ Tκ = ρκbbb,

ρκ θ η̇ +divκ qqqκ = ρκ r,

(2.10)

Trends Comput. Appl. Math., 22, N. 4 (2021)
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where divκ denotes the divergence operator relative to the coordinate system of the configuration
κ , and Fκ is the deformation gradient with respect to the configuration κ . In these equations the
following definitions have been introduced,

Tκ = (detFκ)T F−T
κ , qqqκ = (detFκ)F−1

κ qqq, (2.11)

in which Tκ is called the (first) Piola-Kirchhoff stress tensor and qqqκ is referred to as the material
heat flux vector with respect to the reference configuration κ .

3 THE PRESENT STATE AS REFERENCE CONFIGURATION

Since the choice of a reference configuration is arbitrary, we shall now consider a formulation
that the present configuration is chosen as reference configuration. This is known in continuum
mechanics as the relative motion description in contrast to the usual Eulerian and Lagrangian
descriptions [8, 23].

Let κ0 be the fixed reference configuration of the body B at time t0, and κt its deformed
configuration at the present time t. Let

x = χ(X , t) X ∈ κ0(B),

and
F(X , t) = (∇X χ)(X , t)

be the deformation and the deformation gradient from κ0 to κt .

Now, at some time τ , consider the deformed configuration κτ ,

ξ = χ(X ,τ) := χt(x,τ) ∈ κτ(B), x = χ(X , t) ∈ κt(B).

It can also be regarded as the relative deformation at time τ with respect to the present
configuration at time t as denoted by χt(x,τ) and its gradient

Ft(x,τ) = ∇xχt(x,τ)

is called the relative deformation gradient (see [8, 23]). One can easily show that

Ft(x,τ) = ∇X (χ(X ,τ))∇X (χ(X , t))−1 = F(X ,τ)[F(X , t)]−1.

We also define the relative displacement vector ξ − x as

uuut(x,τ) = χt(x,τ)− x. (3.1)

Note that uuut(x, t) = 0 and

∇xuuut(x,τ) = Ft(x,τ)− I = F(X ,τ)F(X , t)−1− I,

hence, we have
Ft(τ) = I +Ht(τ) or F(τ) = (I +Ht(τ))F(t), (3.2)

Trends Comput. Appl. Math., 22, N. 4 (2021)
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where I is the identity tensor and

Ht(x,τ) = ∇xuuut(x,τ) (3.3)

is the relative displacement gradient at time τ with respect to the present configuration κt

(emphasize, not κ0). Note that Ft(t) = I and Ht(t) = 0.

Moreover, by taking the time derivative with respect to τ , it gives

Ḟ(τ) = Ḣt(τ)F(t). (3.4)

In these expressions and hereafter, we shall often denote a function f as f (t) to emphasize its
value at time t when its spatial variable is self-evident.

In summary, we can represent the deformation and deformation gradient schematically in the
following diagram:

-

�
�

�
�	

@
@
@
@R

X ∈ κ0(B)

x ∈ κt(B) ξ ∈ κτ(B)
I +Ht(τ)

F(t) F(τ)

ξ = x+uuut(τ)

On the other hand, from (3.1) we have

χ(X ,τ) = χ(X , t)+uuut(χ(X , t),τ),

and hence by taking the time derivative with respect to τ , the acceleration at the instant τ becomes

ẍ(X ,τ) = üuut(x,τ). (3.5)

Similarly, for thermal variables, we can define the relative temperature,

θt(τ) = θ(τ)−θ(t), (3.6)

and the relative temperature gradient,

gggt(τ) = ∇xθt(τ) = F(t)−T (∇X θ(τ)−∇X θ(t)),

which implies that
ggg(τ)−ggg(t) = F(t)Tgggt(τ). (3.7)

Note that θt(t) = 0 and gggt(t) = 0.

The relative motion description has been employed in [12] for large deformation in elastic bodies.
In this paper, a straight generalization to thermoelastic bodies will be formulated.

Trends Comput. Appl. Math., 22, N. 4 (2021)
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4 RELATIVE LAGRANGIAN FORMULATION

Regarding the present configuration κt as the reference configuration, we shall denote the Piola-
Kirchhoff stress and the material heat flux at time τ by Tt(x,τ) and qqqt(x,τ) respectively with
respect to the present configuration κt , instead of Tκt (x,τ) and qqqκt (x,τ) as defined in (2.11) for
simplicity,

Tt = (detFt)T F−T
t , qqqt = (detFt)F−1

t qqq. (4.1)

Note that Tt(x, t) = T (x, t) reduces to the Cauchy stress, and qqqt(x, t) = qqq(x, t), in the Eulerian
description.

By the use of the relations (3.1) through (3.7), the constitutive equations at time τ relative to the
present state at time t can now be written in the following form: For x ∈ κt(B) and τ > t,

Tt(x,τ) = T(∇xuuut(x,τ),θt(x,τ); x, t),

η (x,τ) =H(∇xuuut(x,τ),θt(x,τ); x, t),

qqqt(x,τ) =Q(∇xuuut(x,τ),θt(x,τ),∇xθt(x,τ); x, t),

(4.2)

where the last arguments (x, t) stand for their dependence on the values of (F,θ ,ggg) at the
reference present state, which are assumed to be known functions in this formulation.

4.1 Boundary value problem

Let Ω = {x ∈ κt(B)} ⊂ IR3 be the region occupied by the body at the present configuration κt ,
and let ∂Ω = Γ1∪Γ2 = Γ3∪Γ4 be the disjoint unions of its boundary. Let nnn(x, t) be the exterior
unit normal to ∂Ω at the present time.

At time τ > t, we shall consider an initial boundary value problem in Lagrangian formulation
(2.10) , with the present state at time t as the reference configuration, given by the following
system consisting of mechanical and thermal problems simultaneously:

(A)


ρ(t)üuut(τ)−divx Tt(τ) = ρ(t)bbb(τ), in Ω,

Tt(τ)nnn(t) = fff (τ), on Γ1,

uuut(τ) = ddd(τ), on Γ2,

uuut(t) = 0, u̇uut(t) = vvv(t), in Ω,

(4.3)

(B)


ρ(t)θt(τ)η̇(τ)+divx qqqt(τ) = ρ(t)r(τ), in Ω,

qqqt(τ) ·nnn(t) = 0, on Γ3,

θt(τ) = h(τ), on Γ4,

θt(t) = 0, in Ω.

(4.4)

The body is subjected to the surface traction fff (x,τ), the boundary displacement ddd(x,τ), the
relative surface temperature h(x,τ) on the respective parts of ∂Ω at time τ > t, and the initial
velocity vvv(x, t) in Ω at the present time t. Note that unlike the explicit time dependence in the

Trends Comput. Appl. Math., 22, N. 4 (2021)
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above expressions, the spatial dependence is implicitly understood and is not explicitly indicated
for simplicity.

In these relations, for simplicity, divx stands for the divergence operator relative to the coordinate
x ∈ κt(B), which is the same as the operator divκt in (2.10) for the reference configuration κt in
this case.

Together with the constitutive equations (4.2), the mechanical problem (A) and the thermal prob-
lem (B) are to be solved for the relative displacement vector uuut(τ) and the relative temperature
θt(τ). Since the constitutive functions T, H, and Q in (4.2) are generally nonlinear for finite
deformations, the partial differential equations of these problems are genuinely nonlinear. How-
ever, in the relative Lagrangian formulation, for small enough incremental time ∆t = τ − t, we
can easily linearize the constitutive equations relative to the present state at time t, so that the
boundary value problem becomes linear.

4.2 Linearized constitutive equations

Instead of expressing the constitutive equations as given in (4.2) which depend on the state of
the body at the present time, it is usually preferred to express them relative to a distinct refer-
ence configuration, which characterizes the material symmetry. Let κ0 be the preferred refer-
ence configuration of a thermoelastic body B, and let the Cauchy stress T (X , t) be given by the
constitutive equation in the configuration κ0,

T (X , t) = T (F(X , t),θ(X , t)). (4.5)

We shall regard the present configuration κt as the (updated) reference configuration, and con-
sider a small deformation relative to the present state κt(B) at time τ = t +∆t for small enough
∆t. In other words, we shall assume that the relative displacement gradient Ht(τ) and the relative
temperature θt(τ) are small, |Ht(τ)|� 1 and |θt(τ)|� 1, so that we can linearize the constitutive
equation (4.5) at time τ relative to the reference configuration at time t,

T (τ) = T (F(τ),θ(τ))

= T (F(t),θ(t))+∂F T (F(t),θ(t))[F(τ)−F(t)]

+∂θ T (F(t),θ(t))[θ(τ)−θ(t)]+o(2),

or by use of (3.2) and (3.6),

T (τ) = T (t)+∂F T (t)[Ht(τ)F(t)]+∂θ T (t)θt(τ)+o(2),

where o(2) represents higher order terms in the small displacement gradient |Ht(τ)| and the small
relative temperature |θt(τ)|.

The linearized constitutive equation can now be written as

T (τ) = T (t)+C(F(t),θ(t))[Ht(τ)]+P(F(t),θ(t))θt(τ), (4.6)

Trends Comput. Appl. Math., 22, N. 4 (2021)
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where
C(F,θ)[H] := ∂F T (F,θ)[HF ], P(F,θ) := ∂θ T (F,θ), (4.7)

define the fourth order elasticity tensor C(F,θ) and the second order thermal stress coefficient
tensor P(F,θ) relative to the present configuration κt .

Similarly, for the constitutive equation of the heat flux qqq(X , t),

qqq(X , t) = qqq(F(X , t),θ(X , t),ggg(X , t)), (4.8)

we have, by assuming small relative temperature and relative temperature gradient,

qqq(τ) = qqq(F(τ),θ(τ),ggg(τ))

= qqq(t)+∂F qqq(t) [F(τ)−F(t)]

+∂θ qqq(t)(θ(τ)−θ(t))+∂ggg qqq(t)(ggg(τ)−ggg(t))+o(2),

and o(2) stands also for second order terms in the relative temperature gradient |gggt(τ)|. Therefore,
the linearized heat flux becomes

qqq(τ) = qqq(t)+A(t)[Ht(τ)]+hhh(t)θt(τ)−K(t)gggt(τ), (4.9)

where
hhh(t) := ∂θ qqq(t),

K(t) :=−∂ggg qqq(t)F(t)T .

A(t)[Ht(τ)] := ∂F qqq(t) [Ht(τ)F(t)],

(4.10)

Note that hhh, K, and A are first, second, and third order tensor material quantities respectively. The
material function K is called the thermal conductivity tensor.

For the entropy density η(F,θ), we have

η(τ) = η(t)+∂F η(t) · (F(τ)−F(t))+∂θ η(t)(θ(τ)−θ(t))+o(2)

= η(t)+∂F η(t) · (Ht(τ)F(t))+∂θ η(t)θt(τ)+o(2)

From (2.6), we have

−∂η

∂F
=

∂

∂F

(
∂ψ

∂θ

)
=

∂

∂θ

( 1
ρ

T F−T
)
=

1
ρ

∂T
∂θ

F−T ,
∂η

∂θ
=

1
θ

∂ε

∂θ
.

Hence, by differentiation with respect to τ , we obtain

η̇(τ) =− 1
ρ(t)

P(t) · Ḣt(τ)+
c(t)
θ(t)

θ̇t(τ)+o(2),

where the thermal stress coefficient tensor P(F.θ) is defined in (4.7) and the specific heat c(F,θ)
is defined as

c(F,θ) := ∂θ ε(F,θ). (4.11)

Trends Comput. Appl. Math., 22, N. 4 (2021)
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Note that η̇(τ) is a first order quantity, so that θ(τ)η̇(τ) = θ(t)η̇(τ)+o(2), and hence, we obtain

ρ(t)θ(τ)η̇(τ) =−θ(t)P(t) · Ḣt(τ)+ρ(t)c(t) θ̇t(τ)+o(2). (4.12)

Furthermore, by the use of (3.2),

Ft(τ) = I +Ht(τ), detFt(τ) = 1+ tr Ht(τ),

the Piola-Kirchhoff stress and the heat flux defined in (4.1) relative to the reference present
configuration κt at the instant τ ,

Tt(τ) = detFt(τ)T (τ)Ft(τ)
−T ,

qqqt(τ) = detFt(τ)Ft(τ)
−1qqq(τ).

can now be written as

Tt(τ) = T (t)+L(t)[Ht(τ)]+P(t)θt(τ),

qqqt(τ) = qqq(t)+G(t)[Ht(τ)]+hhh(t)θt(τ)−K(t)gggt(τ),
(4.13)

from (4.6) and (4.9), and where

L(t)[H] = (tr H)T (t)−T (t)HT +C(t)[H],

G(t)[H] = (tr H)qqq(t)−Hqqq(t)+A(t)[H].
(4.14)

Note that L(t) and P(t) are functions of (F(t),θ(t)), while K(t), G(t) and hhh(t) depend on
(F(t),θ(t),ggg(t)). All the functions are supposed to be known at the present state at time t being
regarded as the reference state.

4.3 Linearized partial differential equations

By regarding the present state as the reference state, it is assumed that the state variables are
all known functions at the present time t. Those include the deformation gradient F(t), the
temperature θ(t) and their derivatives Ḟ(t), θ̇(t), as well as the stress T (t) and the heat flux
qqq(t).

By use of the linearizations (4.12) and (4.13), the partial differential equations of the problems
(A) and (B) become

ρ(t)üuut(τ)−divx

(
L(t)[∇xuuut(τ)]+P(t)θt(τ)

)
= divx T (t)+ρ(t)bbb(τ),

ρ(t)c(t) θ̇t(τ)−divx

(
K(t)∇xθt(τ)−G(t)[∇xuuut(τ)]−hhh(t)θt(τ)

)
−θ(t)P(t) ·∇xu̇uut(τ) =−divx qqq(t)+ρ(t)r(τ),

(4.15)

where the relevant material functions (L,P,c,K,G,hhh), defined in (4.7), (4.10), (4.11) and (4.14),
depending on the constitutive functions (T (F,θ),qqq(F,θ ,ggg),ε(F,θ)), are summarized below,

L(t)[H] = (tr H)T (t)−T (t)HT +
∂T
∂F

(t)[HF(t)],

G(t)[H] = (tr H)qqq(t)−Hqqq(t)+
∂qqq
∂F

(t) [HF(t)],
(4.16)
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for any second order tensor H, and

P(t) =
∂T
∂θ

(t), K(t) =−∂qqq
∂ggg

(t)F(t)T ,

hhh(t) =
∂qqq
∂θ

(t), c(t) =
∂ε

∂θ
(t).

(4.17)

The equations (4.15) form a system of linear partial differential equations for the relative dis-
placement vector uuut(x,τ) and the relative temperature θt(x,τ) to be solved with the correspond-
ing initial boundary conditions in the problems (A) and (B), for which the state variables of the
body at time t are known and the external supplies (bbb(τ),r(τ)) are given so that the right hand
sides of the system (4.15) are known quantities.

In this linearization, we neither assume the deformation nor the temperature gradient are small,
rather only the relative displacement gradient and the relative temperature gradient with respect
to the present state are assumed to be small. This is the idea of “small-on-large”, the same as
the well-known problem of small deformations superposed on finite deformation in the literature
[5]. Therefore, the overall deformation or the temperature gradient may be of finite values, in
contrast to the usual theory of linear thermoelasticity which linearizes the problem with respect
to the fixed reference configuration assuming small deformation gradient and small temperature
gradient.

4.4 A Mooney-Rivlin thermoelastic material

The material functions in (4.16) and (4.17) depend on the constitutive functions T (F,θ) and
qqq(F,θ ,ggg) relative to the preferred configuration κ0. We shall consider the isotropic thermoelastic
material bodies as an example, for which the general constitutive equations are given by

T (F,θ) = s0I + s1B+ s2B−1,

qqq(F,θ ,ggg) =−(k0I + k1B+ k2B−1)g,
(4.18)

where B = FFT is the left Cauchy-Green strain tensor and g = ∇xθ = F−Tggg is the temperature
gradient with respective to the present configuration κt . These are the general representation of
isotropic functions as a consequence of material objectivity and material symmetry, in which, the
material coefficients are scalar isotropic functions [8].

si = si(θ , IB, IIB, IIIB),

ki = ki(θ , IB, IIB, IIIB, g ·g, g ·Bg, g ·B−1g),

where (IB, IIB, IIIB) are the three principal invariants of B.

To be more specific, we shall assume that si and ki are functions of θ only except s0 = s0(IIIB,θ)

or
s0 =−p(ρ,θ)

Trends Comput. Appl. Math., 22, N. 4 (2021)
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since ρ = ρ0/
√

IIIB = ρ0/|detF |, where p is the pressure. This material model is motivated by
the well-known Mooney-Rivlin elastic material model [11], and will be referred to as a Mooney-
Rivlin thermoelastic material model.

By definition, for any function F(F), the gradient is given by,

∂F

∂F
[H] =

d
dτ

F(F + τH)
∣∣∣
τ=0

∀H,

from which by the use of the results,

d
dτ

det(F + τH)

∣∣∣∣
τ=0

= (detF) tr(HF−1),

d
dτ

(F + τH)−1
∣∣∣∣
τ=0

=−F−1HF−1,

it follows that

∂T
∂F

[H] = β tr(HF−1)I + s1(HFT +FHT )− s2(B−1HF−1 +F−T HT B−1),

∂qqq
∂F

[H] =−k1(HFT +FHT )g+ k2(B−1HF−1 +F−T HT B−1)g,

where

β = ρ
∂ p
∂ρ

.

On the other hand, with g= F−Tggg, we have the gradient,

∂qqq
∂ggg

=−(k0I + k1B+ k2B−1)F−T .

Therefore, from (4.16) and (4.17)2 we have

L(t)[H] = (tr H)T (t)−T (t)HT +β tr(H)I

+ s1(HB(t)+B(t)HT )− s2(B(t)−1H +HT B(t)−1),

G(t)[H] = (tr H)qqq(t)−Hqqq(t)

− k1(HB(t)+B(t)HT )g(t)+ k2(B(t)−1H +HT B(t)−1)g(t),

K(t) = k0I + k1B+ k2B−1.

(4.19)

Furthermore, from (4.17), we have

P(t) =−αβ I +
∂ s1

∂θ
B+

∂ s2

∂θ
B−1,

since
∂ p
∂θ

=−∂ p
∂ρ

∂ρ

∂θ
=−( 1

ρ

∂ρ

∂θ
)(ρ

∂ p
∂ρ

) = αβ ,

where

α =− 1
ρ

∂ρ

∂θ

∣∣∣
p
, β = ρ

∂ p
∂ρ

∣∣∣
θ

, (4.20)
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are the coefficient of thermal expansion and a coefficient of incompressibility respectively. In
these definitions, the function p = p(ρ,θ) is inverted to give ρ = ρ(p,θ), and from

p = p(ρ,θ) = p(ρ(p,θ),θ) = p̃(p,θ),

it follows that
∂ p̃
∂θ

∣∣∣
p
=

∂ p
∂θ

∣∣∣
ρ

+
∂ p
∂ρ

∣∣∣
θ

∂ρ

∂θ

∣∣∣
p
= 0.

Note that L(t) is the fourth order elasticity tensor relative to the present state, and K(t) is known
as the thermal conductivity tensor. These are the essential features, while the thermal expansion
tensor P(t) and the third order tensor G(t) represent the thermo-mechanical coupling effects in
the governing system (4.15) of thermoelasticity.

5 REMARKS ON SUCCESSIVE LINEAR APPROXIMATION

“In large deformation the stress is built up by summation of linear increments
from the stresses in the infinitesimally preceding configurations occupied in the
deformation process.”

Truesdell, ( [23] Sect. 100, P. 407)

In an attempt to deal with large deformation, the initial boundary value problem can be solved
as a sequence of small incremental problems at every incremental step. In such a manner, the
boundary value problem of the system (A) and (B) with linearized partial differential equations
(4.15) can be solved successively with the reference configuration updated to the present state at
every time step. We called this a Successive Linear Approximation (SLA) for large deformation
[12, 13, 14]. The difference of this method for the other incremental methods and its ”small-on-
large” idea of linearization are explained in detail in [14].

The method of SLA has been treated from three different aspects: physical, mathematical and
numerical.

• On physical aspect: It is based on the relative Lagrangian formulation and small-on-large
idea, updating the reference configuration at every incremental time step.

• On mathematical aspect: In [1, 2, 19], analyses of the relative Lagrangian formulation
of elasticity and viscoelasticity regarding existence, uniqueness and regularity have been
proved explicitly for the proposed Mooney-Rivlin model. Such analyses provide a sound
theoretical basis for the realization of the method of SLA.

• On numerical aspect: The SLA has been implemented in numerical simulations with finite
elements. We have shown that the relative Lagrangian formulation facilitates the numerical
viability for successively solving large deformation as a sequence of linear problems.

Trends Comput. Appl. Math., 22, N. 4 (2021)
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For numerical simulations, comparison with exact solutions in finite elasticity are considered to
validate the method, such as pure shear in [13], bending a rectangular block into a circular section
in [12].

The SLA method was proposed originally for the study of large deformation of salt tectonics. It
has been applied successfully to simulations of sediment-salt migration, such as the formation of
salt diapirs, multiple salt domes [14] and borehole closing [1], involving very large deformation
and creep motions, for which the material model has been extended to viscoelastic solid bod-
ies. Although the problems of sediment-salt migration have been widely known and studied in
petroleum industry. Unlike our approach, most results for salt tectonics are modeled by regarding
the bodies as viscous fluids [15] instead of solid bodies to avoid the numerical difficulty due to
large deformation and nonlinearity.

The SLA method and the viscoelastic model for geomechanics has been incorporated into mod-
ern numerical transport codes for subsurface environmental simulators that consider continuum
representations of flow, transport, and reactions in porous media [20,24,25], applicable to most of
the subsurface environmental benchmark problems. It was also used in the mechanical modeling
of fold-trust belt consisting of surface salt structures in China [4].

The method has been applied to an elasto-plastic model for large deformation [18]. For thermo-
mechanical problems, the SLA method has been implemented in various simulations to study the
thermal influence on salt tectonics [4, 21, 22].

6 THERMOELASTIC EXAMPLE

In [4, 21, 22], it was considered a weak coupling between the thermal and mechanic problems,
that is, the temperature field influences the stress field, but not the opposite. In particular, only
the mechanical problem is solved by SLA approach, while the thermal problem is solved by a
classical finite element method approach.

To apply the modeling presented in this paper with proper mechanical-thermal coupling, we con-
sider a 40mm× 60mm× 1mm block, initialy at Tinitial = 298.15K. The temperature on the top
surface increases to 328.15K in 80 time steps. The vertical sides are assumed to be thermally
insulated. The specimen is stretched up to an axial stretch of 0.5, associated with the displace-
ment of 20mm of the top surface. We are also considering that in each time step the steady
state is reached. With these numerical data, the linearized governing equations (4.15) in relative
Lagrangian formulation are used for simulation.

After the usual discretization in finite elements, we have the following matrix formulation{
L bbb+P = N ,

H ḋdd +K ddd +P̄ = F ,
(6.1)

Trends Comput. Appl. Math., 22, N. 4 (2021)
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where, for 1≤ i, j ≤ n

Li j = a
(

L̃(t)[∇xϕi],ϕ j

)
=
∫

Ω

tr
[
L̃(t)∇xϕϕϕ i∇xϕϕϕ j

]
dΩ,

P j = a
(

P(t)θt(τ),ϕ j

)
=
∫

Ω

tr
[
P(t)θt(τ)∇xϕϕϕ i

]
dΩ,

N j =−
(

Te(t),∇xϕ j

)
+
(

ϕ j, fff (τ)
)

Γ1
=−

∫
Ω

Te(t)∇xϕϕϕ jdΩ+
∫

Γ1

ϕϕϕ j fff (τ)dΓ,

Hi j =
(

ϕi,ρ(t)c(t)ϕ j

)
=
∫

Ω

ρ(t)c(t)ϕi(x)ϕ j(x)dΩ,

Ki j = r
(

ϕi,ϕ j

)
=
∫

Ω

K(t)∇xϕi(x) ·∇xϕ j(x)dΩ,

P̄i =−
(

θ(t)P(t) ·∇xu̇uut(τ),ϕi

)
−
(

G(t) ·∇xuuut(τ),ϕi

)
=

−
∫

Ω

(
θ(t)P(t) ·∇xu̇uut(τ)ϕi(x)+G(t) ·∇xuuut(τ),ϕi(x)

)
dΩ,

Fi =−
(

divx qqq(t),ϕi

)
=−

∫
Ω

divx qqq(t)ϕi(x)dΩ.

(6.2)

For this example we use the following parameters: α = 6.36× 10−5K−1, β = 1949.72Pa and
thermal conductivity k = 103 K. Other relevant material parameters are given in Table 1: s1 and
s2 with temperature dependence, where s̄1 = 0.5225Pa and s̄2 = 0.1Pa, are the values of s1 and
s2 in the reference temperature θm = 318.15K.

Table 1: Material parameters with temperature dependence.

Parameter Function

s1(kPa)
0.5s̄1

80
(θm−318.15)+ s̄1

s2(kPa)
0.5s̄2

80
(θm−318.15)+ s̄2

By symmetry of the problem we can simulate only half of the specimen. In Figure 1 we show the
original and the deformed mesh after the final step.

To verify if our results are consistent, in Figure 2 we compare the width of the block in the final
step. The line with crosses represents the width of the upper half of the block and the line without
crosses represents the bottom half width. We can see that the upper half is dilated and this occurs
because the block is heated at the top, and consequently the block expands more in this part of
the specimen. This effect is exactly what we expected to happen and similar results were shown
in [16], despite of different material modeling.

Trends Comput. Appl. Math., 22, N. 4 (2021)
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Figure 1: Original and deformed meshes.
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Figure 2: Comparison of width between upper and lower halves.

7 CONCLUSION

In this article were presented a general thermoelastic Mooney-Rivlin type material model using
the Successive Linear Approximation method. All development, from the governing equations
to the linearized partial differential equations, is shown in detail.

It is worth pointing out that SLA is a new method in the literature and so is the thermoelastic
model presented in this paper.

The numerical example, a classical non-linear finite deformation problem coupled with a tem-
perature problem, is solved by the Finite Element Method. The computational implementation
is facilitated since, with the SLA, we solve a linear problem in each step of time. The numerical
results obtained are physically consistent with similar results in the references.
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