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ABSTRACT. Mathematical and computational modeling have been increasingly applied in many areas
of cancer research, aiming to improve the understanding of tumorigenic mechanisms and to suggest more
effective therapy protocols. The mathematical description of the tumor growth dynamics is often made
using the exponential, logistic, and Gompertz models. However, recent literature has suggested that the
Allee effect may play an important role in the early stages of tumor dynamics, including cancer relapse
and metastasis. For a model to provide reliable predictions, it is necessary to have a rigorous evaluation of
the uncertainty inherent in the modeling process. In this work, our main objective is to show how a model
framework that integrates sensitivity analysis, model calibration, and model selection techniques can im-
prove and systematically characterize model and data uncertainties. We investigate five distinct models with
different complexities, which encompass the exponential, logistic, Gompertz, and weak and strong Allee
effect dynamics. Using tumor growth data published in the literature, we perform a global sensitivity anal-
ysis, apply a Bayesian framework for parameter inference, evaluate the associated sensitivity matrices, and
use different information criteria for model selection (First- and Second-Order Akaike Information Criteria
and Bayesian Information Criterion). We show that such a wider methodology allows having a more de-
tailed picture of each model assumption and uncertainty, calibration reliability, ultimately improving tumor
mathematical description. The used in vivo data suggested the existence of both a competitive effect among
tumor cells and a weak Allee effect in the growth dynamics. The proposed model framework highlights
the need for more detailed experimental studies on the influence of the Allee effect on the analyzed cancer
scenario.

Keywords: predictive oncology, inverse problem, Allee effect, logistic model, Gompertz model,
exponential model.
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1 INTRODUCTION

Cancer is a generic term that refers to various diseases characterized mainly by abnormal cell
growth, affecting different tissues and organs of the body. It is the second leading cause of death
in the world, accounting for approximately 9.6 million deaths in 2018 [16, 34]. Understanding
its growth dynamics is a challenge and may contribute to a better knowledge of the mechanisms
involved and new developments of more effective therapy protocols. In this context, mathemati-
cal and computational modeling has been widely applied in many cancer research areas [4]. This
approach allows the assessment of hypotheses and theories, providing quantitative predictions
and directions for future research in cancer biology [1]. However, for a model to provide reli-
able predictions, it is necessary to have a rigorous evaluation of the uncertainty inherent in the
modeling process. Uncertainties are present in almost all practical problems, especially in bio-
logical processes. They are manifested in various ways including the variability associated with
knowledge (or lack of knowledge) about the parameters and the model uncertainty, that is, the
uncertainty associated with the representation of reality by the mathematical model. Even when
small, uncertainties can have a significant effect on the model output. To account for parame-
ter and model uncertainties, here we put forward a model framework that integrates sensitivity
analysis, model calibration, and model selection methods.

The first step in the overall model analysis is the Sensitivity Analysis (SA). It is a well known
strategy for identifying how uncertainties in model factors impact the quantities of interest QoIs
(model outputs). There is a vast literature accumulated on the diversity of SA methods [30, 31].
Sensitivities are largely understood as derivatives of a specific output with respect to a particular
input. Local SA methods evaluate sensitivities of a QoI with respect to the variation of a single
input factor, while all the others are kept fixed. Global SA methods, in which all parameters are
varied simultaneously, provide sensitivity measures that help the design of more parsimonious
models [31]. It complements uncertainty quantification methods by indicating or quantifying how
much of the variation of the desired QoI is driven by the variability of each model parameter. It
has been used to guide experiments, as well as calibration and modeling processes. Specifically,
by identifying critical parameters for the description of the studied phenomenon, SA can drive the
experimental area towards obtaining the most appropriate data to inform the model and thus to
estimate its parameters more accurately and carefully; more influential parameters may suggest
directions for model improvement while those to which the QoI is insensitive may yield model
simplification or may be fixed during the calibration process [28]. Overall, SA allows a better
understanding of the model, pointing out limitations and capabilities. Of note, local SA methods
that evaluate derivatives of the QoI at some specific points of the parametric space should be
avoided since the corresponding result may be misleading [30].

The parameter values of a model are obtained by solving an inverse problem, a process that is
also called model calibration. Given observational data, the idea is to estimate parameter values
so that model outcomes match the available experimental data. Classical methods such as least-
squares fitting provide only point estimates, a result that does not detail the influence of model
and data uncertainties. In the Bayesian approach, the prior information establishing the current
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E. A. PAIXÃO, G. T. NAOZUKA, J. V. O. SILVA, M. P. C. MENEZES and R. C. ALMEIDA 497

knowledge about the model parameters is updated to make the model outcome consistent with
the available observations, which are also accompanied by uncertainties. Model uncertainties, or
lack of credibility in the model, are also included in the analysis in a very natural way, allowing us
to infer the posterior distribution of the parameters that best fit the theoretical model to the data.
Overall, Bayesian calibration provides not only the maximum a posteriori probability (MAP)
estimate of each parameter but also its probability distribution, quantifying its uncertainty on the
lights of the available data. Parameter uncertainties are then propagated throughout the model, a
process that ultimately yields the uncertainty quantification of the model outcome.

The uncertainties should also be considered in the procedure of selecting the best model in a
set of candidate models for the available experimental data. Murphy et al. [23] pointed out that
model selection based only on goodness-of-fit criteria to data is not a guarantee of best model
predictions. A recent cell invasion study [33] highlights the need to encompass model complexi-
ties and uncertainties as well as data uncertainties, among other issues, in the search for a better
model.

One of the first discussions on model plausibility, calibration, and selection in a wider Bayesian
framework is provided in [25]. Those issues were later systematically grouped in a single algo-
rithm called OPAL (Occam Plausibility Algorithm) and used for model selection and validation
in [22] for predicting glioma growth in murines. In OPAL, Bayesian calibration is preceded by
a SA step that aims at eliminating models with parameters that do not significantly affect the
selected QoI. The authors showed that such elimination may not be adequate since the model
selected at the end of the analysis would have been discarded from the set of candidate mod-
els. Indeed, global SA that allows identifying the importance of parameter variability on the
model outcome is an important tool for model analysis and can be instrumental in model cali-
bration [26, 30]. A different approach for model selection in dynamical systems was proposed
in [32]. Such methodology, named Approximate Bayesian Computation (ABC), does not require
explicit evaluation of likelihoods for parameter inference and also allows for model selection by
combining it with a sequential Monte Carlo method (ABC-SMC). This approach was success-
fully used in [12] for comparing tumor growth models with and without chemotherapy using
hypothetical tumor cells data. Other applications in system biology can be found in [18, 21]. Al-
though the previously mentioned methodologies have been increasingly applied in many areas,
the most used model selection methods for comparing both nested and non-nested models are the
Akaike Information Criterion (AIC), the Bayesian Information Criterion (BIC), and their vari-
ants. The AIC is based on the Kullback-Leibler divergence as a measure of information content
while BIC aims to maximize the posterior model probability. Although designed for different
purposes, both are unbiased estimators that have the same goodness-of-fit term but different
penalty terms. The higher the number of parameters in a model, the greater the model is pe-
nalized. Since the BIC’s penalty term also directly depends on the number of measurements, it
imposes a greater penalty for large sample settings. In [6], the authors shed some light on the
differences in design and objectives between AIC and BIC, among other methods for model se-
lection. They mainly pointed out the appropriate properties of AIC-type criteria and recommend
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their use, especially in medicine, biological, and social sciences, for selecting the most parsimo-
nious model for a given experimental data set. More interesting, they showed that both AIC and
BIC can be derived using Bayesian and non-Bayesian procedures so that the choice to use one
or the other criterion should not be based on the character of the analysis (see [7] for further
details).

The development of predictive mathematical cancer models to represent the growth of cancer cell
populations has always been challenging. Ordinary differential equations are often used includ-
ing exponential, logistic, and Gompertz models. Murphy et al. [23] pointed out that an appropri-
ate choice of growth model is extremely important both for studies that directly analyze tumor
growth and for derivative studies related to treatment evaluation, its efficiency, optimization, and
resistance development. Their studies indicated that the model choice impacts predictions and
estimates of maximum tumor size, doubling time, and the minimum amount of chemotherapy
required for tumor elimination.

In addition to the classical tumor growth models mentioned before, a possible approach to can-
cer modeling is to consider the tumor and its microenvironment as an ecosystem [2, 19]. In this
context, several ecological concepts and theories have contributed to the advancement of the de-
velopment of tumor growth models, such as the Allee effect. This is a biological phenomenon
in which there is a “positive density dependence”, that is, a direct correlation between some in-
dividual fitness and population density [10, 11]. Some populations exhibit reproductive, eating,
spreading, and general survival behaviors that need a minimum population size (denoted by Allee
threshold) for them to settle and maintain themselves in a given environment, a mechanism that is
usually called strong Allee effect. In the absence of an Allee threshold for population survival, the
positive density dependence mechanism is denoted by weak Allee effect. Ecological studies of
Allee effect-related phenomena have contributed to a better understanding of population dynam-
ics and, consequently, impacted their conservation and management [10]. In the cancer biology
approach, the investigation of Allee effect mechanism on tumor growth dynamics at low popula-
tion densities shows promising results, especially regarding progression, recurrence, and metas-
tasis, which significantly impact the study and the development of therapies [5, 14, 17, 19, 24].
What remains to be assessed, and is particularly intriguing, is the possibility of the Allee effect
impacting cancer cell population at higher density population levels, which can occur in some
ecological systems [10].

In this work, our main objective is to show how the integration of suitable modeling tools can
improve and systematically characterize model and data uncertainties. We examined a simple
scenario of the growth of breast adenocarcinoma tumor cells in nude mice, whose experimental
data are available in [23, 35]. The set of candidate models to describe those data is composed of
five models with different complexities. Three of these models are widely used in the mathemat-
ical description of tumor growth dynamics and two of them can characterize either the strong or
the weak Allee effect. In this way, we also assess the presence or absence of the Allee effect in
the considered, biologically realistic, scenario.

Trends Comput. Appl. Math., 22, N. 3 (2021)
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E. A. PAIXÃO, G. T. NAOZUKA, J. V. O. SILVA, M. P. C. MENEZES and R. C. ALMEIDA 499

2 MATERIALS AND METHODS

Figure 1 shows a schematic workflow of the model framework that we put forward in this work.
The first step encompasses experimental data acquisition and the definition of a set of mathe-
matical models capable of describing the data. The next steps include sensitivity analysis, model
calibration, and model selection. At the end of the process, we identify the evidence towards the
model (in the candidate model set) that better supports the data, we quantify the uncertainty on
estimated parameter values given the data, and how these uncertainties impact the tumor growth.
All those steps are described in details in the following subsections.

2.1 Experimental Data

The experimental data used for calibration of the evaluated models were extracted by [23] from
[35]. We used the WebPlotDigitizer tool [29] in [23] to obtain the data on breast cancer cell
volume growth (GI-101A xenografts) in athymic mice, consisting of m= 14 tumor volume points
(in mm3), distributed over a period of 114 days. We define the times when the measurements were
taken by ti, i = 1, . . . ,m. For completeness, this data set is presented in the Appendix.

2.2 Mathematical Models

The models selected for analysis have different complexities. The first candidate model displays
the exponential growth dynamics developed by Malthus (1766-1834) which describes unlim-
ited growth and presents a constant per capita population growth rate over time. Next, we con-
sider resource-limited growth by selecting the Verhulst (1804-1849) logistic and the Gompertz
(1779-1865) models, whose per capita population growth rates are monotonically decreasing.
Moreover, due to recent experimental evidence [5, 14, 17, 24], we also consider two candidate
models that include the Allee effect for which the per capita population growth rate reaches a
maximum value at an intermediate population size. The Extended Allee models considered here
may have strong or weak Allee effect combined with either exponential or logistic growth laws,
respectively denoted by EGAE and LGAE. In the strong Allee effect, the population undergoes
a negative growth rate at very low population sizes, and thus there is a threshold below which the
population goes to extinction. On the other hand, in the weak Allee effect, the growth rate is low
but always positive at small population sizes.

These models are presented in Table 1, which includes the corresponding analytical solutions
when available. Otherwise, numerical solutions were obtained by applying the fourth-order
Runge-Kutta method [20]. In the models, N denotes tumor volume, measured in mm3, defined as
the QoI used in the model analysis, N0 represents its initial value, and t indicates time, measured
in day. The parameter a (day−1) present in all models represents the (maximum) tumor growth
rate. In the logistic and Gompertz models, the parameter b (mm3) represents the carrying capac-
ity of the environment. In the Extended Allee models, d (mm3) is a non-negative parameter that
indicates how the per capita population growth rate varies with population density and c (mm3)

Trends Comput. Appl. Math., 22, N. 3 (2021)
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Experimental Data

Mathematical Models

Sensitivity Analysis

CalibrationModel Selection

Murphy et al. (2016)

Exponential, Logistic, Gompertz,
EGAE, and LGAE

Elementary Effects

Bayesian Calibration and
Parameter Sensitivity Matrix

AIC, AIC , and BIC

Figure 1: A schematic workflow of this study, which starts with the acquisition of the experi-
mental data set on tumor growth and the choice of the set of candidate mathematical models
for describing the data (EGAE and LGAE stand for Exponential Growth with Allee Effect and
Logistic Growth with Allee Effect, respectively). Sensitivity analysis is carried out, followed by
the calibration of model parameters, and the selection of the best model given the data. In each
of these blocks, we indicate the associated information or used methods.

Table 1: Candidate set of mathematical models to describe the selected experimental tumor
growth data with corresponding equations and analytical solutions when available. For the Ex-
tended Allee models, numerical solutions were obtained by applying the fourth-order Runge-
Kutta method [20].

Model Equation Analytical Solution

Exponential
dN
dt

= aN N(t) = N0eat

Logistic
dN
dt

= aN
(

1− N
b

)
N(t) =

N0eat

1− N0

b
(1− eat)

Gompertz
dN
dt

= aN ln
(

b
N

)
N(t) = bexp

(
ln
(

N0

b

)
e−at

)
EGAE

dN
dt

= aN
(

1− c+d
N +d

)
–

LGAE
dN
dt

= aN
(

1− N
b

)(
1− c+d

N +d

)
–
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refers to the Allee threshold: when c > 0, there is a strong Allee effect; when c≤ 0 and d > |c|,
there is a weak Allee effect; and when d =−c, there is no Allee effect.

Associated with each model, we define the vector θθθ = {θ1, . . . ,θn}, which includes all model
parameters and the initial condition N0. For example, for the LGAE model, this vector is defined
as θθθ = {a,b,c,d,N0}. Thus, vector θθθ and the hyperparameter σ , which accounts for both data
and model uncertainties, were estimated by Bayesian calibration (see Subsection 2.4).

2.3 Sensitivity Analysis

In our model framework, we perform a global SA to identify how uncertainties in the model
parameters influence the QoI using the Elementary Effects (EE) method [31]. The EE method is
a simple and informative screening method, which allows ranking the parameters by their order
of importance while requiring a relatively small number of model evaluations when compared to
variance-based methods. The EE for a parameter θi is defined as:

EEi =
N(θ1, . . . ,θi +δ , . . . ,θn)−N(θ1, . . . ,θi, . . . ,θn)

δ
, (2.1)

in which N(θθθ) denotes the QoI, δ ∈
{

1
p−1 , . . . ,1−

1
p−1

}
, and p is the number of discretization

levels of a n-dimensional unit hypercube representing the parametric space. Hence, each hy-
percube direction is associated with a parameter whose range is mapped between 0 and 1. We
compute the following sensitivity indices from EEi, i = 1, . . . ,n:

µi =
1
r

r

∑
j=1

EE j
i ; µ

∗
i =

1
r

r

∑
j=1

∣∣∣EE j
i

∣∣∣ ; σi =

√
1

r−1

r

∑
j=1

(
EE j

i −µi

)2
, (2.2)

in which r is the number of trajectories through the parametric space. The global sensitivity
indices µ∗i and σi indicate, respectively, the influence and nonlinear importance of the ith pa-
rameter on the QoI. The more influential the parameter, small variations in its value will have a
major impact on the QoI estimation, highlighting the importance of accurate calibration. In this
paper, we performed the SA at some time points along the experimental time frame to capture
the changes of parameter interplay at different moments of the tumor growth dynamics. For all
models, we adopted p = 4 and δ = 2

3 , the recommended choices for an appropriate screening of
the parametric space [8, 31], and set r = 20 that yields convergent results.

2.4 Bayesian Calibration

We apply a Bayesian approach for estimating the model parameters. To present it in a general
context, let yyy be the vector of m experimental data and ỹyy the corresponding vector of the values
obtained by simulating the model using θθθ . With these definitions, Bayes’ theorem [3] states:
given an initial knowledge of the parameters, defined by a prior probability distribution p(θθθ),
and a likelihood function L (θθθ |yyy), the knowledge about the parameters can be improved by
evaluating a posterior probability distribution p(θθθ |yyy) from:

p(θθθ |yyy) ∝ L (θθθ |yyy) p(θθθ). (2.3)

Trends Comput. Appl. Math., 22, N. 3 (2021)
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The likelihood function L (θθθ |yyy) is assumed here as Gaussian:

L (θθθ |yyy) = 1
σ
√

2π
exp

(
−1

2

m

∑
i=1

(
y(ti)− ỹ(ti)

σ

)2
)
. (2.4)

It defines the likelihood of getting the model dynamics represented by the experimental data using
model simulations with the vector of parameters θθθ . Ultimately, the likelihood function updates
the prior knowledge about θθθ by considering the information on θθθ that comes from the empirical
data. We also assume that the parameters are independent and uniformly distributed because of
limited information about them. Notwithstanding, different definitions for the likelihood function
and prior probability distributions may be used. We used Markov Chain Monte Carlo (MCMC)
sampling procedure to numerically obtain the posterior distribution. Specifically, parameter in-
ference of each model is performed using the Multilevel Monte Carlo method implemented in the
open-source library QUESO (Quantification of Uncertainty for Estimation, Simulation and Op-
timization) [27], using 40,000 samples. Remark that once the joint posterior distribution p(θθθ |yyy)
is determined, the posterior distributions of the model parameters are the associated marginals.
The MAP estimates of marginal distributions are denoted by θ̂θθ . Model simulations are then ob-
tained propagating (drawing samples from) the joint posterior distribution, determining the tumor
dynamics along time, with the corresponding 95% credible interval [15].

2.5 Parameter Sensitivity Matrix

The model’s predictions can significantly deteriorate due to uncertainties in the parameter val-
ues. To systematically assess the effects of the inference made in the calibration step, we may
calculate a local measure of the sensitivity of the QoI around the MAP estimates. Defining
N(θθθ) = [Nt1(θθθ), . . . ,Ntm(θθθ)]

T as the vector of simulated QoI values at the time of the exper-
imental measurements, we want to evaluate the sensitivity of N(θθθ) to small variations around θ̂θθ .
It is not desirable for the behavior of N(θ̂θθ) to differ considerably from N(θ̂θθ +εθ̂θθ), with ε a small
constant, which would indicate high uncertainty on QoI around MAP estimates. In these cases,
alternatives to reduce parameter uncertainties must be pursued.

A possible procedure to quantify the calibration reliability is by computing the condition number
of the Jacobian (or sensitivity) matrix associated with each model at θ̂θθ [9]. By definition, the
coefficients of the m× n-dimensional sensitivity matrix, denoted by J(θ̂θθ), are measures of the
sensitivity of the QoI at time ti, i = 1, . . . ,m, with respect to variations in the jth parameter,
j = 1, . . . ,n. The coefficients

[
J(θ̂θθ)

]
i j

can be numerically evaluated using centered differences by:

[
J(θ̂θθ)

]
i j
=

∂Nti

∂θ j

∣∣∣∣
θ̂θθ

≈
Nti(θ̂θθ + εθ̂ je j)−Nti(θ̂θθ − εθ̂ je j)

2εθ̂ j
, (2.5)

in which e j is the standard unit vector in the jth direction. Notice that a small value of
[
J(θ̂θθ)

]
i j

indicates that perturbations in θ̂ j yield small changes in Nti. In this case, basically the same value
for Nti would be obtained for a wide range of values of θ̂ j. It is desirable to have the sensitivity

Trends Comput. Appl. Math., 22, N. 3 (2021)
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matrix J(θ̂θθ) with a small condition number, which would mean that the QoI does not vary sig-
nificantly to small changes in the estimated parameters. In this work, the condition number of
J(θ̂θθ) is measured in the 2-norm (the ratio between the maximum and minimum singular values
of J(θ̂θθ)) and we assumed ε = 10−5 for calculating

[
J(θ̂θθ)

]
i j
.

2.6 Model Selection

We use the Akaike (AIC), the second-order Akaike (AICc), and the Bayesian (BIC) information
criteria [6] to select the best model that fits the experimental data from a set of candidate models.
These criteria have a goodness-of-fit term, that depends on the log-likelihood function at its
maximum point, denoted by log(L (θ̂θθ |yyy)). They also have a bias correction term that depends
on the number of estimated parameters in the model (n). Both AIC and AICc are based on the
Kullback-Leibler (K-L) information (or divergence) and they are built to asymptotically select
the best model in the candidate set. In other words, the model with the best trade-off between
goodness-of-fit and model complexity is considered the most adequate. They are mathematically
defined as:

AIC =−2log(L (θ̂θθ |yyy))+2n and AICc = AIC+
2n(n+1)
m−n−1

. (2.6)

The AIC may perform poorly if there are too many parameters when compared to the data size
m. The bias correction term of AICc overcomes this difficulty for cases where the ratio m/n is
small. Burnham and Anderson [6] suggest the use of AICc when this ratio m/n is less than 40.

Based on the assumption that a “true model” belongs to the candidate set and has a small dimen-
sion, BIC has the same goodness-of-fit of AIC and a more stringent bias term, so it tends to favor
smaller models than AIC. It is determined by:

BIC =−2log(L (θ̂θθ |yyy))+n · log(m). (2.7)

A quick and useful way to rank the candidate models is using the criterion differences in which
the criterion values are rescaled based on the minimum value for each criterion. The differences
are given by:

∆AICi = AICi−AICmin; ∆AICci = AICci −AICcmin ; ∆BICi = BICi−BICmin, (2.8)

with i = 1, . . . ,R, where R is the number of candidate models. AICmin, AICcmin , and BICmin

correspond to the models with the lowest AIC, AICc, and BIC, respectively. Models for which
the differences are smaller than 2 are considered to have empirical support [6]. The bigger the
differences, the smaller the empirical support so that models with differences greater than 10
should be dismissed. Denoting (2.8) generically by ∆i, it is also useful to evaluate exp

(
− 1

2 ∆i
)

that represents the likelihood of the ith model given the data. Using

wi =
exp
(
− 1

2 ∆i
)

R
∑

r=1
exp
(
− 1

2 ∆r
) (2.9)

Trends Comput. Appl. Math., 22, N. 3 (2021)
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leads to the weight of the ith model being the best model in the candidate set. Thus, wi represents
the probability of the ith model being the best given the data and the model set. In the context
of Akaike criteria, it is possible to relate models i and j by using the evidence ratios, defined
as wi/w j. These ratios express the evidence about the models which is best in the sense of K-L
information. In particular, we are interested in the ratio w1/w j, considering that the probabilities
of the models are descending, i.e., from best to worst model.

3 RESULTS AND DISCUSSIONS

The prior distributions used in the Bayesian calibration process are shown in Table 2. When
applicable, we used the knowledge about the parameters available in [23]. For the Extended Allee
models, we assumed a wide range for the possible values of the parameters, taking into account
the biological constraints. Also, we assumed N0 ∼U (10,460) mm3 and σ ∼U (0,348) mm3 for
all models. Of note, each prior knowledge for the parameter values was considered as parameter
uncertainties in the SA step.

Table 2: Prior distributions of the parameters associated with each model used in the Bayesian
calibration process. We also assumed N0 ∼ U (10,460) mm3 and σ ∼ U (0,348) mm3 for all
models.

Model a (day−1) b (mm3) c (mm3) d (mm3)

Exponential U (0.017,0.032) – – –

Logistic U (0.021,0.038) U (3480.000,15000.000) – –

Gompertz U (0.001,0.184) U (3480.000,15000.000) – –

EGAE U (0.001,0.100) – U (−10000.000,10000.000) U (1.000,20000.000)

LGAE U (0.001,0.100) U (3480.000,15000.000) U (−10000.000,10000.000) U (1.000,20000.000)

Assuming that parametric uncertainties are described by the defined prior distributions (Table 2),
we first performed the SA of each model. To get an overall view of the global behavior of the
first (µ∗) and second (σ ) order sensitivity indices, SA was performed at six experimental points
representative of the dynamics (20, 43, 65, 82, 98, and 114 days). The corresponding normalized
SA results are presented in Table 3. Considering µ∗, the influence of the initial condition (N0)
decreases over time for all models, except for the LGAE model, for which it slightly grows. For
the exponential model, N0 is the most influential parameter throughout the simulation although
the importance of the tumor growth rate (a) significantly increases over time, from around 10%
up to 40% at the end of the simulation. For the logistic model, the decrease in the importance
of N0 is accompanied by the increasing influence of the parameter a and the carrying capacity
(b), although the rank of importance among them does not change over time. At early times, a is
more influential than b, which can be explained by the fact that the resource limitation is not a
determinant issue. However, the competition for resources begins to play an increasing role over
time, so that b becomes more and more influential. This is also observed for the Gompertz model,
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for which b becomes the most influential parameter at the intermediate times of the dynamics.
The growth rate a becomes the second most influential parameter while the role of the initial
condition N0 has shown no significance in comparison with the other parameters. As in the expo-
nential model, the parameter a of the EGAE model is very influential, with its importance on the
QoI increasing in time. In contrast, the parameter d, that modulates how the per capita popula-
tion growth rate varies, is the most influential parameter at early times but switches position with
a over time. Although much smaller than that of parameters a and d, the importance of the Allee
threshold (c) increases over time. For the LGAE model, the parameter c is the most influential at
early times of the dynamics followed by a, N0, and d. The carrying capacity b does not appear
at the plot since its first order sensitivity index is at least three orders of magnitude smaller than
those of the other parameters, although it increases over time as in the logistic model. As the dy-
namics evolve, the importance of d increases, so that it is the third most influential parameter of
the LGAE model at the end of simulation time. Regarding the nonlinear roles of the parameters
measured by the second order sensitivity index (σ ), we remark the similarities with the results
obtained for the first order sensitivity index.

Overall, considering the parameter ranges used in the SA, the analysis demonstrates that the
present parameter uncertainties significantly impact the tumor growth estimates for the consid-
ered models. Indeed, it is essential to calibrate them more accurately to make robust predictions,
which requires more observational data.

The estimation of the parameters was performed applying the Bayesian technique using the 14
tumor volume points over the 114 days presented in [23]. Table 4 contains the samples of the
posterior distribution of the parameters N0, a, b, c, d, and σ . Visual inspection of the posterior
distributions allows identifying the quality of the performed calibrations. In general, we observe
that there was a substantial improvement of the knowledge about the parameters with the ap-
plication of Bayesian inference. Of note, the marginal posterior distributions of the carrying
capacity for the logistic and Gompertz models present high uncertainty and looks truncated at
the upper limit of the range. This keeps happening even increasing the upper limit of the cor-
responding prior distributions. It is also worth observing the spreading of the samples of the
posterior distributions of some parameters of the EGAE and LGAE models. We remark that: (i)
the experimental data do not show saturation behavior which compromises the calibrations of the
carrying capacity; (ii) likewise, estimates of parameters associated with models considering the
Allee effect present high uncertainty. Given the previous SA, such uncertainties are expected to
have a significant impact on model predictions. For better estimates, new experimental data are
required.

Table 5 presents the MAP estimates of the calibrated parameters, including the ones obtained
for σ . We observe that the parameter values for the exponential, logistic, and Gompertz models
are similar to those obtained in [23]. Note that the posterior distributions presented in Table 4
indicate that the computed estimates are accompanied by uncertainties, about which there was no
information provided in [23]. The LGAE model displays the least MAP estimate for the hyper-
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Table 3: Normalized global sensitivity indices, µ∗i and σi, calculated for each parameter in the
respective models, at times t = 20, 43, 65, 82, 98, and 114 days.
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Table 4: Samples of the posterior distributions of the parameters for each model, including the
initial condition N0 and the hyperparameter σ .
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Table 5: The maximum a posteriori probability (MAP) estimates of calibrated parameters for
each tumor growth model.

Model N0 (mm3) a (day−1) b (mm3) c (mm3) d (mm3) σ (mm3)
Exponential 326.339 0.021 – – – 124.725
Logistic 245.185 0.028 8472.914 – – 109.408
Gompertz 155.186 0.010 14944.920 – – 128.207
EGAE 237.783 0.009 – -8622.679 2642.535 113.245
LGAE 271.309 0.085 5026.492 -1856.806 7023.970 94.289

parameter σ , closely followed by the logistic model. Besides, their hyperparameter uncertainties
are quite similar, being the smallest among all models.

Analyzing Table 5, the c and d MAP estimates of the LGAE model indicate the presence of
a weak Allee effect since c < 0 and d > |c|. On the other hand, the EGAE model does not
display any Allee effect mechanism and therefore lacks a biological interpretation in the ob-
served scenario. Notice that the initial experimental data point refers to the tumor volume with
a significantly larger number of cells (5× 106 cells were inoculated in each mouse to obtain
xenografts [35]) compared to the amount analyzed by [17] (less than 200 cells per mm3), what
may explain why the Allee effect is more significant in the latter. Besides, it is noteworthy that
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(b) Logistic
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(c) Gompertz
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(d) EGAE
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(e) LGAE

Figure 2: Simulation of the models considered in gray, with a credible interval at 95%. The black
dots represent the experimental data.

the experiment of [17] was carried out on an in vitro culture which allows evaluating the tumor
growth dynamics at low cell densities.

Figure 2 shows the tumor growth simulations for each of the calibrated mathematical models.
Overall, all models represented the experimental data adequately. We notice that the credible
interval is very narrow, despite the uncertainties mentioned above. Note that inspection of the
figure alone does not allow to identify the best model that fits the data. This choice will be made
systematically in the model selection step, but it is firstly necessary to assess the quality of the
calibration process.

The sensitivity matrix condition numbers for the calibrated models are presented in Table 6.
Notice that the condition number is over 1.0×105 in all cases, with the Extended Allee models
being the most sensitive to small variations around the MAP estimates. Thus, one must be careful
with the conclusions obtained through the analysis of the EGAE and LGAE models regarding
the evidence of the existence of the Allee effect. Further studies are needed for more detailed
identification of the influence of the Allee effect on the investigated tumor scenario. In contrast,
the exponential model is the least sensitive to these changes, while logistic and Gompertz models
have a little bit higher cond(J). Given the posterior distributions presented in Table 4, this result
reinforces the observation made earlier that incorporating additional experimental data would
improve the estimation of the carrying capacity of the logistic, Gompertz, and LGAE models,
which would ultimately reduce the sensitivity matrix condition number of these models.
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Table 6: Sensitivity matrix condition number (cond(J)) calculated for each tumor growth model.
cond(J) = σmax/σmin, where σmax and σmin are the maximum and minimum singular values of
J, respectively.

Model σmin σmax cond(J)
Exponential 4.188 × 100 6.821 × 105 1.628 × 105

Logistic 3.600 × 10−2 4.545 × 105 1.265 × 107

Gompertz 9.310 × 10−3 8.238 × 105 8.850 × 107

EGAE 1.350 × 10−7 1.572 × 108 1.160 × 1015

LGAE 7.325 × 10−8 1.659 × 106 2.264 × 1013

Table 7: Estimated values for the Akaike (AIC), the second-order Akaike (AICc), and Bayesian
(BIC) information criteria for each tumor growth model. The log-likelihood function at its maxi-
mum point (log(L (θ̂θθ |yyy))), number of calibrated parameters (n), and differences of each criterion
are also presented.

Model log(L (θ̂θθ |||yyy)) n AIC AICc BIC ∆AIC ∆AICc ∆BIC
Exponential -87.725 3 181.449 183.849 183.366 2.637 0.593 1.998
Logistic -85.406 4 178.812 183.257 181.368 0.000 0.000 0.000
Gompertz -87.993 4 183.986 188.431 186.543 5.174 5.174 5.174
EGAE -85.962 5 181.924 189.424 185.119 3.112 6.167 3.751
LGAE -84.706 6 181.413 193.413 185.247 2.601 10.156 3.879

Finally, the model selection information criteria, their corresponding differences, the log-
likelihood function at its maximum point (log(L (θ̂θθ |||yyy))), and the total number of calibrated
parameters (n) used to calculate them are shown in Table 7. Each model selection criterion yields
different ordering of the evaluated models, although all three criteria selected the logistic model
as the most parsimonious based on the available data. According to AIC and BIC, all models are
supported by the available data, having criterion differences less than 10. However, due to the
small ratio between the number of experimental samples m and the number of estimated param-
eters n (that can be as low as 2.333 for the LGAE model), this information can be misleading,
favoring models that have more parameters. Indeed, AICc corrects this small ratio bias and in-
dicates the LGAE model as the worst in the candidate set. However, it is worth noting that the
LGAE model has the smallest absolute value of the log(L (θ̂θθ |||yyy)) and the selection as the worst
model indicates that the goodness-of-fit term was not good enough to compensate the cost of
having more parameters together with small amount of data.

Figure 3 depicts the weights wi which represent the probability that the ith model is the best
among the candidate model set. In fact, the logistic model is the most indicated by the three
model selection criteria, with AIC, AICc, and BIC weights equal to 0.548, 0.535, and 0.575,
respectively. Ranking the models from the smallest to the largest AICc, the weight w1 of the
logistic model is used to calculate the evidence ratios. Compared with the exponential model,
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Figure 3: Probabilities (or weights) of being the best model given the data for each tumor growth
model in the candidate model set.

we obtained
(

w1
w2

= 1.345
)

, while with Gompertz, EGAE, and LGAE models, the evidences

are
(

w1
w3

= 13.291
)

,
(

w1
w4

= 21.836
)

, and
(

w1
w5

= 160.465
)

, respectively. These values indicate
strong evidence in favor of the logistic model.

4 CONCLUDING REMARKS

In this paper, we analyzed some cancer growth models in the light of experimental data in mice.
This analysis allowed the identification of the influence order among each model’s parameters
regarding the tumor volume evolution. The models were calibrated using the Bayesian approach,
which provides not only the parameter MAP estimates but also their probability distributions, in
contrast to pointwise estimates obtained by [23]. This fact adds more information to the study
and may be used for more detailed analysis. In general, the available data were able to improve
the prior knowledge defined for all model parameters. The sensitivity of these models in the
neighborhood of the MAPs was also verified. We then applied model selection criteria to identify
the best model for describing the experimental data. The strength of evidence in favor of the
logistic model being the best in comparison with the exponential model is 1.345, and the evidence
increases when compared to the Gompertz (13.29), EGAE (21.84), and LGAE (160.46) models.

Although the weak Allee effect was suggested by the LGAE model, this model was not selected
as the best to describe the available data and its sensitivity matrix condition number indicated
high sensitivity to small variations around MAP estimates. Thus, additional experiments are nec-
essary to precisely evaluate the importance of the Allee effect for the considered experimental
scenario. There is evidence in the literature on the importance of the Allee effect in breast cancer
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cell culture [17], in post-resection recurrence of glioblastoma [24], in tumor necrotic nucleus
formation [14], among others. Of note, other studies indicated that the Allee effect even without
being considered a priori in the modeling process may emerge as a result of tumor dynamics.
This fact occurred in the experiments performed in [5] as a result of specific regulation of the
phenotypic plasticity between migratory and proliferative tumor cells. The presence of the Allee
effect on tumor growth dynamics may be related to the existence of cooperative behavior between
tumor cells, due to autocrine growth factors, and the production and secretion of diffuse signal-
ing molecules by cells that increase growth and proliferation of other cells [24]. Recently, this
hypothesis was further investigated in [13] using both in vitro and clinical trials. That reported ev-
idence opens new avenues for tumor growth modeling in more complex scenarios which should
be investigated preferably based on a larger amount of experimental data.

Overall, the proposed methodology for model analysis provides a detailed picture of calibration
reliability, model assumptions, and uncertainties, and may be particularly useful in developing
models to describe more complex scenarios of tumor dynamics.
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Table 8: Experimental data set obtained from [23] through WebPlotDigitizer tool. Murphy et
al. [23] extracted these data from [35].

Time
(day)

Tumor Volume
(mm3)

Time
(day)

Tumor Volume
(mm3)

0.000 230.000 75.933 1460.000

8.858 310.000 81.950 1900.000

20.000 580.000 87.075 2170.000

32.033 650.000 92.869 2560.000

42.953 680.000 97.994 2710.000

53.872 930.000 106.908 2920.000

65.014 1210.000 114.039 3480.000
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