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ABSTRACT. In this work we solve the nonlinear strong evaporation problem in rarefied gas dynamics.
The analysis is based on the BGK model, with three-dimensional velocity, derived from the Boltzmann
equation. We present the complete development of a closed form solution for evaluating density, velocity
and temperature perturbations and the heat flux of a gas. Numerical results are presented and discussed.
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1 INTRODUCTION

In the previous work [13], the Analytical Discrete Ordinates (ADO) method [4] was used to solve
the strong evaporation problem based on the BGK model [5], considering a monoatomic gas with
one-dimensional velocity. This problem was formulated by Arthur and Cercignani [2] and solved
by Siewert and Thomas Jr. [18] where was used the Elementary Solutions method [6]. With the
purpose of improve the physical model, Siewert and Thomas Jr. [19] used the BGK equation,
considering a gas with three-dimensional velocity, and the Elementary Solutions method for
obtaining numerical results for the problem. In this work, the ADO method is used to solve the
strong evaporation problem with the BGK equation, considering also a monoatomic gas, but with
three-dimensional velocity.

In regard to the ADO solution, this method is an analytical version of the Discrete Ordinates
method proposed by Chandrasekhar [8] for radiative transfer problems. The ADO method has
been used to solve, in a unified manner, a class of flow [15], heat-transfer [16] and weak evapo-
ration/condensation [14] problems in rarefied gas dynamics, where was considered a rectangular
and one-dimensional geometry. Still, the ADO solution has been shown to be concise, accu-
rate, easy to implement and efficient from a computational point of view. These good aspects
of the solution can be attributed to the fact that the method is analytical in the spatial variable,
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202 STRONG EVAPORATION

generates results with accuracy of several digits and has a computational implementation consti-
tuted by simple steps, such as solve an eigenvalue problem or a linear system. Furthermore, the
computational time of execution of the method is very small in a personal computer.

Research activity on the kinetics of vapors near to interphase boundaries has increased signifi-
cantly over the last few years [1, 3, 10, 11, 14, 17, 21, 22, 24, 25, 26], reflecting this way in a large
number of problems in science and technology, to which evaporation and condensation phenom-
ena are of practical importance. As noted in Ytrehus [25] work, problems of this kind are found
in diversified areas, such as upper atmosphere meteorology, the sodium cooling of nuclear reac-
tors, projects of spacecraft experiments, petrochemical engineering, vacuum technology and the
interaction of high-power laser radiation with metal surfaces.

Following Yasuda, Takata and Aoki [24], it is widely accepted that gas flows around a body are
usually studied by the Navier-Stokes set of equations with the nonslip condition for the flow
velocity and the nonjump condition for the temperature. However, such conditions are invalid
if a phase transition (evaporation or condensation) takes place at the surface of the body, i.e., if
vapor flows around condensed phases are considered. In fact, it is known that there is a difference
between the temperature of the surface of the condensed phase and the temperature of the gas in
contact with this surface. The same is true for the pressure: the pressure of the vapor at the surface
is different from its saturation pressure at the temperature of the surface. These differences are
called jumps of temperature and pressure, respectively. In order to study gas flows with a phase
transition by the fluid-dynamic set of equations, at physical problems of the previously mentioned
areas, one needs boundary conditions that describe these jumps correctly. Such conditions are
called jump conditions for evaporation and condensation.

Still following Yasuda, Takata and Aoki [24], in kinetic theory the determination of the jumps
for evaporation and condensation is done solving a half-space boundary-value problem of the
Boltzmann equation [7,23]. When the evaporation or condensation is strong, either the nonlinear
Boltzmann equation or nonlinear models should be used to obtain the jump conditions for the
compressible Euler set of equations.

In the strong evaporation problem the distribution function, in the original nonlinear equation, is
linearized around a downstream Maxwell distribution containing a drift velocity u∞. This proce-
dure is described in Ref. [2]. In this work, firstly, the linearized version of the problem is solved
to evaluate density, velocity and temperature perturbations and the heat flux of the gas. Then,
the analytical ADO solution is used in the original nonlinear version of the model, in order to
get a second set of results for the quantities of interest. Numerical results are presented for both
approaches.

2 THE KINETIC MODEL

Following Scherer [13], we consider here the steady-state limit of the one-dimensional and time
dependent problem proposed by Ytrehus [25]: a liquid (or solid) is initially in equilibrium with
its pure vapor which occupies the half-space x ≥ 0 at uniform temperature and pressure T0 and

Trends Comput. Appl. Math., 22, N. 2 (2021)
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p0, respectively. At time t = 0 the pressure level in the vapor changes discontinuously to the value
p∞ and it is kept at this (constant) value. Then, evaporation or condensation begins, through the
phase boundary, according to whether the pressure level p∞ is below or above the saturation
pressure p0, respectively.

Continuing to follow Ytrehus [25] analysis, it is reasonable to assume that far downstream of the
boundary, after a sufficiently long time, a steady-state will be accomplished. The flow far from
the phase boundary is then a uniform equilibrium flow with constant parameters n∞, u∞ and T∞.
In this way, a kinetic boundary layer will form between the phase boundary and the downstream
equilibrium region, in which, nonequilibrium effects may influence significantly the motion of
the vapor [25].

In this context, we describe here the state of gas by the nonlinear BGK model [5], with three
degrees of freedom, which can be written as

v ·∇r f (r,v) = η [φ(r,v)− f (r,v)], (2.1)

where f (r,v) is the distribution function, r = (x,y,z) is the spatial vector, v = (vx,vy,vz) is the
molecular velocity vector, η is an appropriate collision frequency, φ(r,v) is a local Maxwell
distribution given by

φ(r,v) = n(r)
[

m
2πkT (r)

]3/2

exp
{
−m|v−u(r)|2

2kT (r)

}
, (2.2)

m is the mass of a gas particle and k is the Boltzmann constant [7]. Following Williams [23], the
density n(r), mass velocity u(r) and temperature T (r) in Eq. (2.2) are given by

n(r) =
∫

∞

−∞

∫
∞

−∞

∫
∞

−∞

f (r,v)dv, (2.3)

u(r) =
1

n(r)

∫
∞

−∞

∫
∞

−∞

∫
∞

−∞

v f (r,v)dv (2.4)

and
T (r) =

m
3kn(r)

∫
∞

−∞

∫
∞

−∞

∫
∞

−∞

|v−u(r)|2 f (r,v)dv. (2.5)

Still, the heat flux is given by

q(r) =
m
2

∫
∞

−∞

∫
∞

−∞

∫
∞

−∞

|v−u(r)|2[v−u(r)] f (r,v)dv. (2.6)

We assume that far downstream the gas relaxes to an equilibrium distribution characterized by
steady drift velocity u∞, density n∞ and temperature T∞,

f∞(v) = n∞

[
m

2πkT∞

]3/2

exp
{
−m|v−u∞|2

2kT∞

}
, (2.7)

where u∞ = (u∞,0,0). At this point, we follow Arthur and Cercignani [2] and we linearize f (r,v)
and φ(r,v) around f∞(v). In this manner, we write f (r,v) as

f (r,v) = f∞(v)[1+h(r,v)], (2.8)

Trends Comput. Appl. Math., 22, N. 2 (2021)
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where h(r,v) is a perturbation to the absolute Maxwellian f∞(v). Thus, we substitute Eq. (2.8)
into Eq. (2.1) and linearize φ(r,v) around f∞(v) to obtain, for the x direction (normal in relation
to the interface), the linearized equation written in terms of the perturbation function h,

cx
∂

∂τ
h(τ,c)+h(τ,c) = π

−3/2
∫

∞

−∞

∫
∞

−∞

∫
∞

−∞

e−|c
′−u|2F(c′,c : u)h(τ,c′)dc′, (2.9)

where

F(c′,c : u) = 1+2(c′−u)·(c−u)+(2/3)(|c′−u|2−3/2)(|c−u|2−3/2), (2.10)

is the scattering kernel and
τ = xη [m/(2kT∞)]

1/2, (2.11 a)

c = v[m/(2kT∞)]
1/2 (2.11 b)

and
u = u∞[m/(2kT∞)]

1/2, (2.11 c)

are dimensionless variables. We note that u = (u,0,0) is the normalized downstream drift
velocity.

2.1 Boundary Conditions

To obtain the boundary condition for the interface, in terms of the perturbation h, we follow
Siewert and Thomas Jr. [18] and set x = 0 in Eq. (2.8), to find (for vx > 0)

h(0,v) =
f0(v)− f∞(v)

f∞(v)
, (2.12)

where f0(v) is the Maxwellian distribution, given by Eq. (2.2), evaluated at x = 0

f0(v) = n0

[
m

2πkT0

]3/2

exp
{
−m|v−u0|2

2kT0

}
, (2.13)

where u0 = (u0,0,0) is the mass velocity at the interface. We then linearize f0(v) around f∞(v)
to obtain the dimensionless boundary condition (for cx > 0)

h(0,c) = ∆N0 +2(cx−u)(uw−u)+(|c−u|2−3/2)∆T0, (2.14)

with dimensionless variables defined by

uw = u0[m/(2kT∞)]
1/2, (2.15 a)

∆N0 =
n0−n∞

n∞

(2.15 b)

and
∆T0 =

T0−T∞

T∞

. (2.15 c)

On the other hand, when x→∞, f (r,v) approaches f∞(v) and, looking back at Eq. (2.8), we then
find the condition

lim
τ→∞

h(τ,c) = 0. (2.16)

Trends Comput. Appl. Math., 22, N. 2 (2021)
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2.2 Physical Quantities of Interest

We substitute Eq. (2.8) into Eqs. (2.3) to (2.6) to find, in terms of h, the density perturbation

∆N(τ) = π
−3/2

∫
∞

−∞

∫
∞

−∞

∫
∞

−∞

e−|c−u|2 h(τ,c)dc, (2.17)

the velocity perturbation

∆U(τ) =
π−3/2

u

∫
∞

−∞

∫
∞

−∞

∫
∞

−∞

e−|c−u|2(cx−u)h(τ,c)dc, (2.18)

the temperature perturbation

∆T (τ) =
2
3

π
−3/2

∫
∞

−∞

∫
∞

−∞

∫
∞

−∞

e−|c−u|2(|c−u|2−3/2)h(τ,c)dc (2.19)

and the heat flux

Qx(τ) = π
−3/2

∫
∞

−∞

∫
∞

−∞

∫
∞

−∞

e−|c−u|2(|c−u|2−5/2)(cx−u)h(τ,c)dc. (2.20)

3 A REFORMULATION IN TERMS OF MOMENT EQUATIONS

Since the quantities we want to evaluate, Eqs. (2.17) to (2.20), are defined in terms of moments
of the h function, we look for simpler problems written in terms of those moments. In this way,
we first define

h1(τ,cx) = π
−1/2

∫
∞

−∞

∫
∞

−∞

e−(c
2
y+c2

z )h(τ,cx,cy,cz)dcydcz (3.1)

and
h2(τ,cx) = π

−1/2
∫

∞

−∞

∫
∞

−∞

e−(c
2
y+c2

z )(c2
y + c2

z −1)h(τ,cx,cy,cz)dcydcz. (3.2)

Then, we multiply Eq. (2.9) by
φ1(cy,cz) = e−(c

2
y+c2

z ) (3.3)

and we integrate over all cy and cz, such that, (introducing the new notation cx = ξ ) we obtain a
new equation for h1

ξ
∂

∂τ
h1(τ,ξ )+h1(τ,ξ ) = π

−1/2
∫

∞

−∞

e−(ξ
′−u)2×[

k11(ξ
′,ξ : u)h1(τ,ξ

′)+ k12(ξ
′,ξ : u)h2(τ,ξ

′)
]

dξ
′, (3.4)

where

k11(ξ
′,ξ : u) = 1+2(ξ ′−u)(ξ −u)+(2/3)

[
(ξ ′−u)2−1/2

][
(ξ −u)2−1/2

]
(3.5)

and
k12(ξ

′,ξ : u) = (2/3)
[
(ξ −u)2−1/2

]
. (3.6)

Following analogous procedure, we multiply Eq. (2.9) now by

φ2(cy,cz) = (c2
y + c2

z −1)e−(c
2
y+c2

z ) (3.7)

Trends Comput. Appl. Math., 22, N. 2 (2021)
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and we integrate over all cy and cz to obtain (for cx = ξ )

ξ
∂

∂τ
h2(τ,ξ )+h2(τ,ξ ) = π

−1/2
∫

∞

−∞

e−(ξ
′−u)2×[

k21(ξ
′,ξ : u)h1(τ,ξ

′)+ k22(ξ
′,ξ : u)h2(τ,ξ

′)
]

dξ
′, (3.8)

where
k21(ξ

′,ξ : u) = (2/3)
[
(ξ ′−u)2−1/2

]
(3.9)

and
k22(ξ

′,ξ : u) = 2/3. (3.10)

Equations (3.4) and (3.8) can be rewritten in vector form as

ξ
∂

∂τ
H(τ,ξ )+H(τ,ξ ) =

∫
∞

−∞

ψ(ξ ′ : u)K(ξ ′,ξ : u)H(τ,ξ ′)dξ
′, (3.11)

where H(τ,ξ ) has components h1(τ,ξ ) and h2(τ,ξ ),

ψ(ξ : u) = π
−1/2e−(ξ−u)2

(3.12)

and the components ki, j(ξ
′,ξ : u) of the 2×2 matrix K(ξ ′,ξ : u) are defined in Eqs. (3.5), (3.6),

(3.9) and (3.10).

Analogously, the boundary conditions given by Eqs. (2.14) and (2.16) are rewritten, for ξ > 0,
as

H(0,ξ ) = ∆N0π
1/2

[
1
0

]
+2π

1/2(ξ −u)(uw−u)

[
1
0

]
+

∆T0π
1/2

[
(ξ −u)2−1/2

1

]
(3.13)

and
lim
τ→∞

H(τ,ξ ) = 0. (3.14)

In terms of the definitions given in Eqs. (3.1) and (3.2) the quantities of interest are also expressed
in a vector form. In this way, the solution for the H problem is used to evaluate the density
perturbation

∆N(τ) = π
−1
∫

∞

−∞

e−(ξ−u)2

[
1
0

]T

H(τ,ξ )dξ , (3.15)

the velocity perturbation

∆U(τ) =
π−1

u

∫
∞

−∞

e−(ξ−u)2

[
ξ −u

0

]T

H(τ,ξ )dξ , (3.16)

Trends Comput. Appl. Math., 22, N. 2 (2021)
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the temperature perturbation

∆T (τ) =
2
3

π
−1
∫

∞

−∞

e−(ξ−u)2

[
(ξ −u)2−1/2

1

]T

H(τ,ξ )dξ (3.17)

and the heat flux

Qx(τ) = π
−1
∫

∞

−∞

e−(ξ−u)2
(ξ −u)

[
(ξ −u)2−3/2

1

]T

H(τ,ξ )dξ , (3.18)

where T denote the transpose operation.

To develop an analytical solution to the problem defined by Eq. (3.11), it is convenient to
introduce a new function

G(τ,ξ ) = e−(ξ−u)2
H(τ,ξ ) (3.19)

such that, we rewrite Eq. (3.11) in the form

ξ
∂

∂τ
G(τ,ξ )+G(τ,ξ ) = ψ(ξ : u)

∫
∞

−∞

K(ξ ′,ξ : u)G(τ,ξ ′)dξ
′, (3.20)

where G(τ,ξ ) has components g1(τ,ξ ) and g2(τ,ξ ), with boundary conditions given, for ξ > 0,
by

G(0,ξ ) = e−(ξ−u)2
H(0,ξ ) (3.21)

and
lim
τ→∞

G(τ,ξ ) = 0. (3.22)

In the same way, based on the definition given in Eq. (3.19), we express the density perturbation
as

∆N(τ) = π
−1
∫

∞

−∞

[
1
0

]T

G(τ,ξ )dξ , (3.23)

the velocity perturbation

∆U(τ) =
π−1

u

∫
∞

−∞

[
ξ −u

0

]T

G(τ,ξ )dξ , (3.24)

the temperature perturbation

∆T (τ) =
2
3

π
−1
∫

∞

−∞

[
(ξ −u)2−1/2

1

]T

G(τ,ξ )dξ (3.25)

and the heat flux

Qx(τ) = π
−1
∫

∞

−∞

(ξ −u)

[
(ξ −u)2−3/2

1

]T

G(τ,ξ )dξ . (3.26)

We develop the solution for the G problem: Eq. (3.20) supplemented by Eqs. (3.21) and (3.22),
in the next section.

Trends Comput. Appl. Math., 22, N. 2 (2021)
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4 A DISCRETE ORDINATES SOLUTION

Equation (3.20) clearly has separable exponential solutions, so we use ν as a separation constant
and we seek solutions of the form

G(τ,ξ ) =ΦΦΦ(ν ,ξ )e−τ/ν , (4.1)

where ΦΦΦ(ν ,ξ ) has components Φ1(ν ,ξ ) and Φ2(ν ,ξ ). Thus, we substitute Eq. (4.1) into
Eq. (3.20) to obtain

(1−ξ/ν)ΦΦΦ(ν ,ξ ) = ψ(ξ : u)
∫

∞

−∞

K(ξ ′,ξ : u)ΦΦΦ(ν ,ξ ′)dξ
′. (4.2)

Following Scherer [13] and Siewert and Thomas Jr. [18], we can use some moments of the
function ΦΦΦ(ν ,ξ ) to simplify Eq. (4.2). In this way, firstly, we integrate Eq. (4.2) over all ξ to find

∫
∞

−∞

[
ξ

0

]T

ΦΦΦ(ν ,ξ )dξ = 0. (4.3)

Continuing, we can multiply Eq. (4.2) by (ξ −u) and integrate the resulting equation over all ξ

to find ∫
∞

−∞

[
ξ 2

0

]T

ΦΦΦ(ν ,ξ )dξ = 0. (4.4)

Thus, looking to Eqs. (4.3) and (4.4), we rewrite Eq. (4.2), as

(1−ξ/ν)ΦΦΦ(ν ,ξ ) = ψ(ξ : u)Q(ξ : u)
∫

∞

−∞

ΦΦΦ(ν ,ξ ′)dξ
′, (4.5)

where the 2×2 matrix

Q(ξ : u) =

[
q11(ξ : u) q12(ξ : u)
q21(ξ : u) q22(ξ : u)

]
(4.6)

have the components

q11(ξ : u) = 1−2u(ξ −u)+(2/3)
(
u2−1/2

)[
(ξ −u)2−1/2

]
, (4.7 a)

q12(ξ : u) = (2/3)
[
(ξ −u)2−1/2

]
, (4.7 b)

q21(ξ : u) = (2/3)
(
u2−1/2

)
(4.7 c)

and
q22(ξ : u) = 2/3. (4.7 d)

Still, at this point we note that the exponential term, in Eq. (4.5), can be expressed as

ψ(ξ : u) = π
−1/2cosh(2ξ u)e−(ξ

2+u2)+π
−1/2sinh(2ξ u)e−(ξ

2+u2) (4.8)

and, in this manner, we write the final convenient form of Eq. (4.5)

(1−ξ/ν)ΦΦΦ(ν ,ξ ) = P(ξ : u)[A(ξ : u)+B(ξ : u)]
∫

∞

−∞

ΦΦΦ(ν ,ξ ′)dξ
′, (4.9)

Trends Comput. Appl. Math., 22, N. 2 (2021)
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where
P(ξ : u) = π

−1/2e−(ξ
2+u2) (4.10)

and the 2×2 matrixes

A(ξ : u) =

[
a11(ξ : u) a12(ξ : u)
a21(ξ : u) a22(ξ : u)

]
(4.11)

and

B(ξ : u) =

[
b11(ξ : u) b12(ξ : u)
b21(ξ : u) b22(ξ : u)

]
(4.12)

have the components

a11(ξ : u) = [1+2u2 +(2/3)
(
u2−1/2

)(
ξ

2 +u2−1/2
)
]cosh(2ξ u)−

[(4/3)u3
ξ +(4/3)uξ ]sinh(2ξ u), (4.13 a)

a12(ξ : u) = (2/3)
(
ξ

2 +u2−1/2
)

cosh(2ξ u)− (4/3)uξ sinh(2ξ u), (4.13 b)

a21(ξ : u) = (2/3)
(
u2−1/2

)
cosh(2ξ u), (4.13 c)

a22(ξ : u) = (2/3)cosh(2ξ u), (4.13 d)

b11(ξ : u) = [1+2u2 +(2/3)
(
u2−1/2

)(
ξ

2 +u2−1/2
)
]sinh(2ξ u)

− [(4/3)u3
ξ +(4/3)uξ ]cosh(2ξ u), (4.14 a)

b12(ξ : u) = (2/3)
(
ξ

2 +u2−1/2
)

sinh(2ξ u)− (4/3)uξ cosh(2ξ u), (4.14 b)

b21(ξ : u) = (2/3)
(
u2−1/2

)
sinh(2ξ u) (4.14 c)

and
b22(ξ : u) = (2/3)sinh(2ξ u). (4.14 d)

Now we rewrite the integral term in Eq. (4.9) as

(1−ξ/ν)ΦΦΦ(ν ,ξ ) = P(ξ : u)[A(ξ : u)+B(ξ : u)]
∫

∞

0
[ΦΦΦ(ν ,ξ ′)+ΦΦΦ(ν ,−ξ

′)]dξ
′. (4.15)

Then we introduce a (half-range) quadrature scheme [0,∞), to approximate the integral term of
the above equation, such that

(1−ξ/ν)ΦΦΦ(ν ,ξ ) = P(ξ : u)[A(ξ : u)+B(ξ : u)]
N

∑
k=1

wk [ΦΦΦ(ν ,ξk)+ΦΦΦ(ν ,−ξk)] . (4.16)

Here ξk and wk are, respectively, N nodes and weights of the (arbitrary) quadrature scheme. If
we now evaluate Eq. (4.16) in ξ = ±ξi, for i = 1, ...,N, and note that P(ξ : u) and A(ξ : u) are
even functions,

P(ξ : u) = P(−ξ : u), (4.17)

A(ξ : u) = A(−ξ : u) (4.18)
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and B(ξ : u) is an odd function,

B(ξ : u) =−B(−ξ : u), (4.19)

we obtain the discrete-ordinates version of Eq. (4.16) as

(1∓ ξi/ν)ΦΦΦ(ν ,±ξi) = P(ξi : u)[A(ξi : u)±B(ξi : u)]
N

∑
k=1

wk [ΦΦΦ(ν ,ξk)+ΦΦΦ(ν ,−ξk)] . (4.20)

We express now Eq. (4.20) in a matrix form, as

(I−M/ν)ΦΦΦ+(ν) = P[A+B]W[ΦΦΦ+(ν)+ΦΦΦ−(ν)] (4.21)

and
(I+M/ν)ΦΦΦ−(ν) = P[A−B]W[ΦΦΦ+(ν)+ΦΦΦ−(ν)], (4.22)

where I is the 2N×2N identity matrix, M, P, A, B and W are 2N×2N matrices defined by

M = diag{ξ1, . . . ,ξN ,ξ1, . . . ,ξN} , (4.23)

P = diag{P(ξ1 : u), . . . ,P(ξN : u),P(ξ1 : u), . . . ,P(ξN : u)} , (4.24)

A =

[
a11 a12

a21 a22

]
, (4.25)

B =

[
b11 b12

b21 b22

]
, (4.26)

where in Eqs. (4.25) and (4.26) the N×N submatrices are defined by

ai j = diag
{

ai j(ξ1 : u), . . . ,ai j(ξN : u)
}

(4.27)

and
bi j = diag

{
bi j(ξ1 : u), . . . ,bi j(ξN : u)

}
, (4.28)

for i, j = 1,2. Furthermore,

W =

[
w 0
0 w

]
(4.29)

is the 2N×2N matrix with components

[w]i, j = w j, (4.30)

for i, j = 1, ...,N. Still, ΦΦΦ±(ν) are 2N vectors, such that

ΦΦΦ±(ν) =
[

Φ1(ν ,±ξ1) · · · Φ1(ν ,±ξN) Φ2(ν ,±ξ1) · · · Φ2(ν ,±ξN)
]T

. (4.31)

Now we rewrite Eqs. (4.21) and (4.22) as the 4N×4N eigenvalue problem[
C D
E F

][
ΦΦΦ+(ν)

ΦΦΦ−(ν)

]
= λ

[
ΦΦΦ+(ν)

ΦΦΦ−(ν)

]
, (4.32)
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where the eigenvalues are given by
λ = ν

−1, (4.33)

C = M−1[I−P(A+B)W], (4.34)

D =−M−1P(A+B)W, (4.35)

E = M−1P(A−B)W (4.36)

and
F =−M−1[I−P(A−B)W]. (4.37)

From Eq. (4.32) we obtain a set of 4N eigenvalues associated with their respective eigenvectors.
How the eigenvalues are related with the separation constant in the form given by Eq. (4.33),
we obtain, not only one, but 4N separation constants ν j and 4N elementary solutions ΦΦΦ±(ν j)

(see Eq. (4.31)). In this way, we are ready to write the general solution of the discrete-ordinates
version of the G problem, given by Eq. (3.20), as

G(τ,±ξi) =
4N

∑
j=1

A jΦΦΦ(ν j,±ξi)e−τ/ν j . (4.38)

Although there are no mathematical evidences in the formulation presented until here, we observe
in our numerical results of the computational procedure (presented in Section 6) that, for any N,
all eigenvalues of the problem given by Eq. (4.32) are real.

As was mentioned by Arthur and Cercignani [2], this problem have solution only for values of
the downstream drift velocity u2 < 5/6. This critical value of the parameter u (see Eq. (2.11 c)) is
such that the corresponding Mach number is unity [2]. Still, this result was confirmed by Siewert
and Thomas Jr. [19] and Sone and Sugimoto [21] calculations.

Continuing, since this is a conservative problem, we have to deal with the issue of having de-
generate eigenvalues, that approach zero (separation constants going to infinity) as N tends to
infinity [6]. For the specific problem we are solving in this work, the number of eigenvalues with
this behavior depends on the value of the parameter u. Thus, for u = 0 and u2 = 5/6 we find four
degenerate eigenvalues and, for other values of u, we find three, when N increase. Because of
that, we neglect these eigenvalues and look for exact solutions of the problem given by Eq. (3.20)
to add to the general discrete ordinates solution. Therefore, Eq. (4.38) can be rewrite as

G(τ,±ξi) = A∗1G1(±ξi)+A∗2G2(±ξi)+A∗3G3(±ξi)+A∗4G4(τ,±ξi)+

4N−4

∑
j=1

A jΦΦΦ(ν j,±ξi)e−τ/ν j , (4.39)

for u = 0 and u2 = 5/6, and

G(τ,±ξi) = A∗1G1(±ξi)+A∗2G2(±ξi)+A∗3G3(±ξi)+
4N−3

∑
j=1

A jΦΦΦ(ν j,±ξi)e−τ/ν j , (4.40)
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for 0 < u2 < 5/6 and u2 > 5/6, where the introduced exact solutions are given by [19]

G1(ξ ) =

[
1
0

]
e−(ξ−u)2

, (4.41 a)

G2(ξ ) =

[
ξ −u

0

]
e−(ξ−u)2

(4.41 b)

and

G3(ξ ) =

[
(ξ −u)2−1/2

1

]
e−(ξ−u)2

. (4.41 c)

In Eq. (4.39), the fourth exact solution is [12] (for u = 0)

G4(τ,ξ ) =

[
τξ 2−3τ/2−ξ 3

τ−ξ

]
e−ξ 2

, (4.41 d)

and (for u2 = 5/6)

G4(τ,ξ ) =

[
τ(ξ −u)2−3uτ(ξ −u)+ τ− (ξ −u)3 +3u(ξ −u)2

τ− (ξ −u)

]
e−(ξ−u)2

. (4.41 e)

The next step is to determine the arbitrary constants present in the solution (Eq. (4.39) or (4.40)).
We use the boundary conditions for doing that.

Still in relation to the eigenvalue problem given by Eq. (4.32), the sign of eigenvalues is relevant.
The number of eigenvalues (positives or negatives) also depend on the value of parameter u. For
u2 < 5/6 we find 2N− 2 positive eigenvalues and for u2 ≥ 5/6 we obtain 2N− 3 eigenvalues
with this sign. How the separation constants have the same sign of eigenvalues (see Eq. (4.33)),
we then substitute the general solution, Eqs. (4.39) and (4.40), into Eq. (3.22) to obtain that the
coefficients, A∗1, A∗2, A∗3, A∗4 and A j, these last associated with the negative separation constants,
must be equal to zero. Then, for u2 < 5/6 we write

G(τ,±ξi) =
2N−2

∑
j=1

A jΦΦΦ(ν j,±ξi)e−τ/ν j (4.42)

and for u2 ≥ 5/6

G(τ,±ξi) =
2N−3

∑
j=1

A jΦΦΦ(ν j,±ξi)e−τ/ν j , (4.43)

where ν j are only the positive separation constants. In addition, the discrete-ordinates version of
the interface boundary condition, Eq. (3.21), is

G(0,ξi) = π
1/2[∆N0G1(ξi)+2(uw−u)G2(ξi)+∆T0G3(ξi)], (4.44)
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for i = 1, ...,N. In this way, if we substitute Eq. (4.42) into Eq. (4.44), we obtain for u2 < 5/6 the
square linear system 2N×2N

2N−2

∑
j=1

A jΦΦΦ(ν j,ξi)−π
1/2[∆N0G1(ξi)+∆T0G3(ξi)] = 2π

1/2(uw−u)G2(ξi), (4.45)

for i = 1, ...,N. If we substitute Eq. (4.43) into Eq. (4.44), we obtain for u2 ≥ 5/6 the
undetermined linear system 2N× (2N−1)

2N−3

∑
j=1

A jΦΦΦ(ν j,ξi)−π
1/2[∆N0G1(ξi)+∆T0G3(ξi)] = 2π

1/2(uw−u)G2(ξi), (4.46)

for i= 1, ...,N. Once we solve Eqs. (4.45) and (4.46) we find the coefficients A j and the quantities
∆N0 and ∆T0 defined in Eqs. (2.15b) and (2.15c).

Here, we note that, although, in principle, we can deal with the system given by Eq. (4.46),
with the least squares method, we have not found convergence, when we increase N, to suggest
a possible numerical reliable result. So, we consider this fact as an indication of the known
theoretical result [2] and assume Eq. (4.42) as our general solution for the strong evaporation
problem, where the arbitrary constants are given by the solution of the square linear system
defined by Eq. (4.45).

Thus, we substitute Eq. (4.42) into Eqs. (3.23) to (3.25) and we use Eqs. (4.3) and (4.4) to express
the final form of the density perturbation

∆N(τ) = π
−1

2N−2

∑
j=1

A je−τ/ν j X(ν j), (4.47)

the velocity perturbation
∆U(τ) =−∆N(τ) (4.48)

and the temperature perturbation

∆T (τ) =
2
3

π
−1

2N−2

∑
j=1

A je−τ/ν j Y(ν j). (4.49)

For we obtain the expression for the heat flux, we multiply the first component of Eq. (4.2) by
(ξ − u)2 and we integrate the resulting equation over all ξ . In the same way, we integrate the
second component of Eq. (4.2) over all ξ and, using Eqs. (4.3) and (4.4), we find

∫
∞

−∞

[
ξ 3

ξ

]T

ΦΦΦ(ν ,ξ )dξ = 0. (4.50)

Thus, we substitute Eq. (4.42) into Eq. (3.26) and, using Eqs. (4.3), (4.4) and (4.50), we find for
the heat flux

Qx(τ) =−uπ
−1

2N−2

∑
j=1

A je−τ/ν j [Y(ν j)−X(ν j)]. (4.51)
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Still, in Eqs. (4.47) and (4.51)

X(ν j) =
N

∑
k=1

wk

[
1
0

]T

[ΦΦΦ(ν j,ξk)+ΦΦΦ(ν j,−ξk)] (4.52)

and in Eqs. (4.49) and (4.51)

Y(ν j) =
N

∑
k=1

wk

[
u2−1/2

1

]T

[ΦΦΦ(ν j,ξk)+ΦΦΦ(ν j,−ξk)]. (4.53)

5 A NONLINEAR APPROACH

Once the discrete-ordinates solution for the linearized version of the strong evaporation problem
is completely established, we follow Scherer [12, 13] to define what we call a “post-processing
(PP)” procedure. In this sense, we consider the proposed nonlinear model, given by Eq. (2.1)
to (2.5), with boundary conditions defined in Eqs. (2.7) and (2.13), rewritten in terms of the
dimensionless variables given in Eqs. (2.11). We then use the quantities evaluated by the ADO
method, Eqs. (4.47) to (4.49), into Eq. (2.2), which defines the Maxwellian distribution. Then,
we substitute this distribution into the right-hand side of Eq. (2.1), which is then solved for a
known distribution φ(r,v). The solution defines the original f distribution, which is then used to
evaluate again Eqs. (2.3) to (2.6) – the macroscopic quantities for the gas. We present in the next
section some numerical results and comparisons between this procedure and the linear version.

6 COMPUTATIONAL ASPECTS AND NUMERICAL RESULTS

To start the computational procedure, the first step is to define the quadrature scheme. Then, once
we have the N quadrature points ξk and the weights wk defined, the solution is concise and easy
to implement. We proceed with:

• the solution of an eigenvalue problem, Eq. (4.32), to obtain the separation constants ν j and
the elementary solutions ΦΦΦ±(ν j);

• the solution of a linear system, given by Eq. (4.45);

• the evaluation of the density, velocity and temperature perturbations (Eqs. (4.47) to (4.49))
and the heat flux (Eq. (4.51)). Still, from the solution of Eq. (4.45) we are able to get the
quantities ∆N0 and ∆T0 in Eqs. (2.15b) and (2.15c).

• The quantities listed above are then used, in what we call “post-processing” procedure, in
Eqs. (2.1) to (2.6).

We use the subroutine RG from the EISPACK package [20] to solve the eigenvalue problem
(Eq. (4.32)). To find the solution of the linear systems (Eqs. (4.45) and (4.46)) we then use the
subroutines DGEFA and DGESL, for the determined case, and the subroutines DQRDC and
DQRSL for the undetermined case, all from the LINPACK package [9].
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The numerical results considered here were obtained by a FORTRAN program, using, in general,
N = 80 quadrature points. The computational time required for generating all quantities of inter-
est for one value of u is a few seconds on a Pentium (R) Dual-Core (2.10 GHz, 3.0 GB RAM).
If we increase N up to N = 200, all digits listed in the tables are preserved (plus or minus one in
the last digit). Still, in regard to our quadrature scheme, we define a half-range scheme in [0,∞).
We use the transformation

γ(ξ ) = e−ξ (6.1)

to map the interval [0,∞) into [0,1], where we are then able to make use of the usual Gauss-
Legendre quadrature scheme, after using a new change of variable

v(γ) = 2γ−1. (6.2)

In regard to the numerical results, we first checked some previous results available in the literature
[19], for the linearized problem, for the ratios n∞/n0 and T∞/T0. We obtained agreement with all
digits listed in that reference. Results we generate from the linearized version are listed in Tables
1 and 2, referred as “Linear” case, where we also show the results we generate with the “Post-
processing (PP)” approach. Both are compared with the results of the previous work [13] and
with the Ytrehus [25] results for a numerical treatment of a set of moment equations which
take into account nonlinear terms. These results [25] seem to be in agreement with experimental
works. Looking at these tables it is apparent that the BGK model considered here is a significant
improvement over the one-dimensional gas considered in Ref. [13].

We found more significant difference, when comparing results from the linearized model with
the PP approach, for the density ratio than the temperature ratio. As expected, major variation is
noted when u increases and the nonlinear modeling should be more effective. However, we also
see that the PP procedure seems generate results in better agreement with Ytrehus [25] results.

Still, in Tables 3 to 6, we list results for the distribution profiles, which were not provided in
previous references [19, 25], where only the ratios showed in Tables 1 and 2 were evaluated.

In regard to parameter uw (see Eq. (2.15 a)) associated to mass velocity at interface, how, in the
begin of problem, the gas is in equilibrium with the phase boundary, in the same conditions of
temperature and saturation pressure, and no there evaporation or condensation, we consider uw

equal to zero in our formulation. Thus, we set uw = 0 in our computational code to generate
all numerical results presented. If a non zero value of uw was used, the results would certainly
change. Still, in Refs. [13,19,25], which were used to make comparisons with numerical results,
the mass velocity at interface also is considered as zero.
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Table 1: Ratio n∞/n0.

Previous work [13] Present work Ytrehus [25]
u Linear PP Linear PP
0.0 1.00000 1.00000 1.00000 1.00000 1.000
0.1 8.81170(–1) 8.73324(–1) 8.61415(–1) 8.48948(–1) 8.494(–1)
0.2 7.96123(–1) 7.72378(–1) 7.65173(–1) 7.27601(–1) 7.283(–1)
0.3 7.32184(–1) 6.90327(–1) 6.94942(–1) 6.29386(–1) 6.303(–1)
0.4 6.82430(–1) 6.22488(–1) 6.41788(–1) 5.49278(–1) 5.501(–1)
0.5 6.42727(–1) 5.65542(–1) 6.00448(–1) 4.83468(–1) 4.841(–1)
0.6 6.10439(–1) 5.17090(–1) 5.67628(–1) 4.29068(–1) 4.292(–1)
0.7 5.83801(–1) 4.75381(–1) 5.41176(–1) 3.83870(–1) 3.834(–1)
0.8 5.61584(–1) 4.39135(–1) 5.19638(–1) 3.46183(–1) 3.447(–1)
0.9 5.42908(–1) 4.07414(–1) 5.02020(–1) 3.14713(–1) 3.120(–1)

Table 2: Ratio T∞/T0.

Previous work [13] Present work Ytrehus [25]
u Linear PP Linear PP
0.0 1.00000 1.00000 1.00000 1.00000 1.000
0.1 9.19458(–1) 9.20433(–1) 9.55222(–1) 9.56753(–1) 9.567(–1)
0.2 8.42106(–1) 8.45652(–1) 9.10103(–1) 9.15865(–1) 9.152(–1)
0.3 7.69530(–1) 7.76876(–1) 8.64777(–1) 8.76913(–1) 8.756(–1)
0.4 7.02368(–1) 7.14499(–1) 8.19556(–1) 8.39659(–1) 8.378(–1)
0.5 6.40748(–1) 6.58453(–1) 7.74781(–1) 8.03915(–1) 8.016(–1)
0.6 5.84522(–1) 6.08403(–1) 7.30756(–1) 7.69501(–1) 7.671(–1)
0.7 5.33391(–1) 5.63854(–1) 6.87722(–1) 7.36245(–1) 7.342(–1)
0.8 4.86987(–1) 5.24234(–1) 6.45835(–1) 7.03974(–1) 7.028(–1)
0.9 4.44912(–1) 4.88933(–1) 6.05152(–1) 6.72524(–1) 6.729(–1)
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Table 3: Density perturbation ∆N(τ).

u = 0.5 u = 0.8 u = 0.9
τ Linear PP Linear PP Linear PP

0.0 3.74170(–1) 4.078(–1) 8.08298(–1) 1.070 9.77886(–1) 1.521
0.1 3.10046(–1) 3.216(–1) 7.69429(–1) 9.258(–1) 9.72630(–1) 1.361
0.2 2.72970(–1) 2.763(–1) 7.42591(–1) 8.459(–1) 9.68785(–1) 1.277
0.3 2.44505(–1) 2.433(–1) 7.19507(–1) 7.869(–1) 9.65348(–1) 1.216
0.4 2.21154(–1) 2.174(–1) 6.98666(–1) 7.399(–1) 9.62139(–1) 1.170
0.5 2.01347(–1) 1.961(–1) 6.79404(–1) 7.008(–1) 9.59081(–1) 1.133
0.6 1.84195(–1) 1.782(–1) 6.61356(–1) 6.675(–1) 9.56131(–1) 1.102
0.7 1.69133(–1) 1.627(–1) 6.44292(–1) 6.384(–1) 9.53265(–1) 1.076
0.8 1.55770(–1) 1.492(–1) 6.28057(–1) 6.128(–1) 9.50465(–1) 1.054
0.9 1.43819(–1) 1.373(–1) 6.12538(–1) 5.898(–1) 9.47720(–1) 1.035
1.0 1.33065(–1) 1.268(–1) 5.97650(–1) 5.690(–1) 9.45020(–1) 1.018
2.0 6.57847(–2) 6.254(–2) 4.73550(–1) 4.274(–1) 9.19560(–1) 9.226(–1)
5.0 1.10003(–2) 1.073(–2) 2.47078(–1) 2.256(–1) 8.50492(–1) 8.224(–1)
7.0 3.74891(–3) 3.691(–3) 1.61927(–1) 1.513(–1) 8.07905(–1) 7.802(–1)

Table 4: Velocity perturbation ∆U(τ).

u = 0.5 u = 0.8 u = 0.9
τ Linear PP Linear PP Linear PP

0.0 –3.74170(–1) –2.897(–1) –8.08298(–1) –5.170(–1) –9.77886(–1) –6.034(–1)
0.1 –3.10046(–1) –2.433(–1) –7.69429(–1) –4.807(–1) –9.72630(–1) –5.766(–1)
0.2 –2.72970(–1) –2.164(–1) –7.42591(–1) –4.582(–1) –9.68785(–1) –5.608(–1)
0.3 –2.44505(–1) –1.957(–1) –7.19507(–1) –4.403(–1) –9.65348(–1) –5.489(–1)
0.4 –2.21154(–1) –1.786(–1) –6.98666(–1) –4.252(–1) –9.62139(–1) –5.392(–1)
0.5 –2.01347(–1) –1.640(–1) –6.79404(–1) –4.120(–1) –9.59081(–1) –5.311(–1)
0.6 –1.84195(–1) –1.512(–1) –6.61356(–1) –4.003(–1) –9.56131(–1) –5.243(–1)
0.7 –1.69133(–1) –1.399(–1) –6.44292(–1) –3.896(–1) –9.53265(–1) –5.183(–1)
0.8 –1.55770(–1) –1.298(–1) –6.28057(–1) –3.799(–1) –9.50465(–1) –5.132(–1)
0.9 –1.43819(–1) –1.207(–1) –6.12538(–1) –3.709(–1) –9.47720(–1) –5.086(–1)
1.0 –1.33065(–1) –1.125(–1) –5.97650(–1) –3.626(–1) –9.45020(–1) –5.046(–1)
2.0 –6.57847(–2) –5.885(–2) –4.73550(–1) –2.994(–1) –9.19560(–1) –4.798(–1)
5.0 –1.10003(–2) –1.062(–2) –2.47078(–1) –1.840(–1) –8.50492(–1) –4.512(–1)
7.0 –3.74891(–3) –3.678(–3) –1.61927(–1) –1.314(–1) –8.07905(–1) –4.382(–1)
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Table 5: Temperature perturbation ∆T (τ).

u = 0.5 u = 0.8 u = 0.9
τ Linear PP Linear PP Linear PP

0.0 9.63884(–2) 7.013(–2) 4.27184(–1) 2.066(–1) 6.35434(–1) 2.861(–1)
0.1 8.48578(–2) 6.418(–2) 4.10018(–1) 2.156(–1) 6.32504(–1) 3.092(–1)
0.2 7.66260(–2) 5.927(–2) 3.97059(–1) 2.188(–1) 6.30202(–1) 3.221(–1)
0.3 6.98330(–2) 5.491(–2) 3.85566(–1) 2.200(–1) 6.28092(–1) 3.315(–1)
0.4 6.40061(–2) 5.098(–2) 3.75001(–1) 2.200(–1) 6.26094(–1) 3.387(–1)
0.5 5.89040(–2) 4.740(–2) 3.65116(–1) 2.191(–1) 6.24172(–1) 3.445(–1)
0.6 5.43773(–2) 4.413(–2) 3.55771(–1) 2.177(–1) 6.22306(–1) 3.492(–1)
0.7 5.03237(–2) 4.113(–2) 3.46876(–1) 2.159(–1) 6.20484(–1) 3.530(–1)
0.8 4.66683(–2) 3.837(–2) 3.38367(–1) 2.137(–1) 6.18697(–1) 3.561(–1)
0.9 4.33540(–2) 3.584(–2) 3.30199(–1) 2.113(–1) 6.16939(–1) 3.587(–1)
1.0 4.03359(–2) 3.349(–2) 3.22335(–1) 2.088(–1) 6.15206(–1) 3.609(–1)
2.0 2.06982(–2) 1.763(–2) 2.56089(–1) 1.797(–1) 5.98749(–1) 3.685(–1)
5.0 3.62361(–3) 3.154(–3) 1.33810(–1) 1.069(–1) 5.53819(–1) 3.534(–1)
7.0 1.24777(–3) 1.093(–3) 8.76890(–2) 7.444(–2) 5.26085(–1) 3.392(–1)

Table 6: Heat flux Qx(τ).

u = 0.5 u = 0.8 u = 0.9
τ Linear PP Linear PP Linear PP

0.0 1.14793(–1) 1.027(–1) 1.34017(–1) 3.025(–1) 2.22613(–2) 4.221(–1)
0.1 9.13798(–2) 8.094(–2) 1.23520(–1) 2.441(–1) 2.14856(–2) 3.438(–1)
0.2 7.90159(–2) 6.964(–2) 1.17601(–1) 2.114(–1) 2.11341(–2) 2.992(–1)
0.3 6.98781(–2) 6.147(–2) 1.12925(–1) 1.875(–1) 2.08887(–2) 2.661(–1)
0.4 6.25727(–2) 5.506(–2) 1.08931(–1) 1.687(–1) 2.06976(–2) 2.399(–1)
0.5 5.64955(–2) 4.981(–2) 1.05384(–1) 1.535(–1) 2.05399(–2) 2.186(–1)
0.6 5.13148(–2) 4.538(–2) 1.02159(–1) 1.409(–1) 2.04046(–2) 2.008(–1)
0.7 4.68241(–2) 4.158(–2) 9.91830(–2) 1.303(–1) 2.02854(–2) 1.858(–1)
0.8 4.28838(–2) 3.826(–2) 9.64052(–2) 1.213(–1) 2.01782(–2) 1.730(–1)
0.9 3.93941(–2) 3.533(–2) 9.37919(–2) 1.136(–1) 2.00804(–2) 1.620(–1)
1.0 3.62807(–2) 3.272(–2) 9.13181(–2) 1.068(–1) 1.99899(–2) 1.525(–1)
2.0 1.73687(–2) 1.663(–2) 7.15326(–2) 6.974(–2) 1.92932(–2) 1.022(–1)
5.0 2.78246(–3) 2.958(–3) 3.70904(–2) 3.632(–2) 1.77870(–2) 7.754(–2)
7.0 9.38625(–4) 1.020(–3) 2.43155(–2) 2.466(–2) 1.68996(–2) 7.650(–2)
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7 CONCLUDING REMARKS

The ADO method was used to develop a closed form solution for the nonlinear BGK version
of the strong evaporation problem in rarefied gas dynamics, considering a monoatomic gas with
three-dimensional velocity. The analytical discrete-ordinates solution obtained for the linearized
version of the problem was associated with a re-evaluation of the quantities of interest, in order
to take into account the nonlinear effects inherent to the problem. The new approach seemed to
improve the results of the linearized version, mainly when the values of the drift velocity increase,
when compared with results available in the literature. The BGK model considered here is also a
significant improvement over the one-dimensional case considered in work [13].
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