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ABSTRACT. A mathematical model was developed to describe the dynamics of the primary infection
of dengue virus in infants who were born to a mother immune to some serotype of the dengue virus.
The model is given by a system of nonlinear ordinary differential equations with time-dependent variables
for the number of dengue virus antibodies of the infant transferred from their immune, uninfected, and
infected monocytes and dengue virus. The mathematical analysis was carried out where the conditions for
the existence of the disease-free equilibrium and the endemic equilibrium were established. The numerical
simulations were performed considering different scenarios for a basic reproductive number, R0, illustrating
the global convergence of the numerical results for the equilibrium points. The results are in agreement with
our derived global stability analysis. It can be concluded that dengue hemorrhagic fever in infants could
occur in the peaks observed for the infected monocytes and dengue virus.

Keywords: system of differential equations, global analysis, virus, infant, numerical simulations.

1 INTRODUCTION

The dengue virus (DENV) has four different serotypes (DENV 1-4), and any of these can cause
different severities, such as dengue (DF) in the classic form and dengue hemorrhagic fever (DHF)
in the severe form.

*Corresponding author: Felipe de Almeida Camargo – E-mail: felipe.a.camargo@unesp.br
1São Paulo State University (UNESP), Institute of Biosciences, R. Prof. Dr. Antônio Celso Wagner Zanin, 250, Rubião
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Jr. 18618-689, Botucatu, SP, Brazil – E-mail: fernando.pio@unesp.br https://orcid.org/0000-0003-2774-7297



i
i

“A7-1417” — 2022/2/9 — 15:39 — page 102 — #2 i
i

i
i

i
i

102 A MATHEMATICAL MODEL FOR ACCESSING DHF IN INFANTS

DENV is the most important arbovirus that affects man. Currently, DHF affects most Latin Amer-
ican and Asian countries as well as regions of tropical and subtropical climates, and has become
a major cause of hospitalization and death among children and adults in these regions [18].

In the first infection with a serotype, the individual acquires antibodies specific to that serotype.
In the second heterologous infection, DHF can develop. Secondary infections can cause 40 times
more DHF cases than primary infections [5]. The humoral immune response that controls the
viral infection and dissemination is the cellular immune response required for eliminating an
established infection.

With respect to the immunological aspects of the disease, an individual’s recovery from infec-
tion by one of the serotypes provides lifelong immunity after primary infection by the homolo-
gous serotype and short immunity by the heterologous serotype. However, immunity or cross-
protection for individuals recovering from a primary infection who become susceptible to other
serotypes is only partial and temporary. [18]. Subsequent infections with other serotypes sub-
stantially increase the risk of contracting DHF [13]. The mechanisms responsible for the severity
of secondary dengue infections are not completely understood.

One hypothesis postulates that cross-reactive antibodies are responsible for enhancing the in-
fection in a mechanism called antibody-dependent enhancement (ADE) [2]. The ADE makes
vaccination difficult, as failure to immunize against all strains exposes the population to the risk
of more severe infections [12]. In adults and children, the ADE process works as follows: the sus-
ceptible individual is first infected with one of the DENV serotypes and produces neutralizing
antibodies specific to that serotype.

Following the elimination of the primary infection, specific antibodies persist in the body and,
if another infection occurs with a second distinct serotype, the primary infection antibodies bind
to this second serotype and do not neutralize it, facilitating the penetration of the viral particles
from the new serotype and causing an increase in the number of infected cells and free virus.

Although the main form of transmission of the disease is caused by the bite of an infected female
mosquito, there are reports of vertical transmission of dengue [9]. Vertical transmission of DENV
and anti-DENV immunoglobulins (Ig) are pointed out as being responsible for the pathogenesis
and its manifestations in infants [7, 13].

In particular, DHF may occur in infants upon primary infection with one of the serotypes due to
the vertical transfer of specific antibodies from their DENV-immune mother [7]. These specific
antibodies play an important role in the infants? lives, protecting during the first months of life,
but then, as their serum levels decrease, the chance of infection may increase through the ADE
[12]. The number of severe cases of DHF occurring in infants (< 1 year old) born to dengue-
immune mothers is increasing [6, 7, 13].

The studies involving the concepts of immunology in the problem of DHF in infants are far from
ideal. Furthermore, in terms of mathematical modeling, it is not commonly studied. The con-
struction of a compartmental mathematical model can be an important tool, as well as analyzing

Trends Comput. Appl. Math., 23, N. 1 (2022)
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and understanding the behavior of these immunological aspects associated with the problem of
DHF in infants. The main objectives of the work presented here are to propose and study a
mathematical model that mimics dengue disease in infants, considering passive immunity.

The paper is organized as follows: in Section 2, we begin by discussing the immunological math-
ematical model, taking into account passive immunity and also presenting the global stability
analysis. In Section 3 we present the numerical simulations, as illustrations to the mathemati-
cal analysis and to understand the dynamics of dengue hemorrhagic fever in infants. Finally, in
Section 4 we present concluding remarks.

2 MATHEMATICAL MODEL

The main hypothesis considered in the mathematical modeling is infant passive immunity, which
is acquired by transferring specific antibodies from their immune mother. The mathematical
model, based on [1], is described by a system of nonlinear ordinary differential equations. Table
1 shows the state variables for the mathematical model.

Table 1: The state variables.

Variable Description Unit
A number of antibodies of the infants [molecules] [ml]−1

X number of uninfected monocytes [cells] [ml]−1

Y number of infected monocytes [cells] [ml]−1

V number of free immature DENV [RNA copies] [ml]−1

In this paper, passive immunity is modeled considering the variable A, where αAA is the natural
decay at the rate of αA > 0 and ηAV is the antibody neutralization, consumed at a rate η > 0,
due to their contact with DENV.

The dynamics of the uninfected monocytes, X , is modeled by Ω−µX X , where Ω > 0 and µX > 0
are the rates of production and mortality of the monocytes, respectively. The term βXV represents
the DENV infection. Then, uninfected monocytes in contact with the virus, V , are infected, Y , at
a rate β > 0. The term µYY is the natural decay of the infected monocytes with the rate µY > 0.

We are assuming that the virus infects new cells and is produced inside the monocytes, according
to the term kY where k is the production rate of the new viruses. The DENV is eliminated with
the rate δV > 0 and is neutralized with a rate γ > 0 being the dynamics described by the term
γVA [12]. Figure 1 illustrates the complete dynamics as described above.

Trends Comput. Appl. Math., 23, N. 1 (2022)
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Figure 1: Compartmental model diagram.

According to the above premises, the mathematical model is given by

dA
dt

=−αAA−ηAV

dX
dt

= Ω−µX X−βXV

dY
dt

= βXV −µYY

dV
dt

= kY −δVV − γVA

. (2.1)

The biological parameters of the model (2.1) are shown in Table 2.

Table 2: Summary of model parameters, their description and range of values.

Parameter Description Range of values/Unit. Reference
k DENV production rate 104−107 [RNA copies] [cells]−1 [day]−1 [8]
log(2)µ−1

X , log(2)µ−1
Y susceptible and infected cells half-life 0.1 - 30 [day]−1 [4], [11]

log(2)α−1
A antibodies half-life (0.014−1.5)×103 [day]−1 [19]

Ω rate of production of susceptible cells 4×103−17.5×106 [cells]−1 [day]−1 [4]
log(2)δ−1

V viral particles half-life (2.5−17.2)×24−1[day]−1 [12]
β infection rates of X 10−10−10−8 [ml] [RNA copies]−1[day]−1 [12]
η antibody neutralizing consumption (0.09−1)×10−8 [ml] [RNA copies]−1[day]−1 –
γ antibody neutralization rate 8×10−10 [ml] [molecules]−1[day]−1 [12]

2.1 Mathematical Analysis

The next section presents the positivity of state variables, the model-associated equilibria 2.1,
and the local and global stability analysis of the equilibria.

Trends Comput. Appl. Math., 23, N. 1 (2022)
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2.1.1 Positivity Analysis

This subsection is devoted to establishing the positivity of all state variables in the model. Since
it is related to a biological population problem, the positivity of the model 2.1 is analyzed with
the following initial conditions given by the P+ set.

P+ =

{
(A, X , Y, V ) ∈ R4 : A(0) = A0 ≥ 0, X(0) = X0 ≥ 0,
Y (0) = Y0 ≥ 0 and V (0) =V0 ≥ 0

}
. (2.2)

In the hyperplane AYV =
{
(A,X ,Y,V ) ∈ R4 : X = 0

}
, the system (2.1) can be rewritten as:

dA
dt

= −ηAV −αAA

dX
dt

= Ω

dY
dt

= −µYY

dV
dt

= kY −δVV − γVA

. (2.3)

In the second equation of (2.3), we have dX
dt = Ω > 0 since all parameters are positive. Then, X

strictly increases in P+.

In the hyperplane AXY =
{
(A,X ,Y,V ) ∈ R4 : V = 0

}
. For dV

dt = kY > 0 it is necessary to verify
if Y > 0. Then, we need to analyse the differential equation dY

dt = −µYY. As Y = Y0e−µY t > 0,
thus conclude dV

dt > 0. Thus, V is non-negative in P+.

In the hyperplane AXV =
{
(A,X ,Y,V ) ∈ R4 : Y = 0

}
, we obtain X > 0 and V > 0. Then, dY

dt =

βXV > 0, and Y remains positive in P+.

The hyperplane XYV =
{
(A,X ,Y,V ) ∈ R4 : A = 0

}
is an invariant subspace, since we obtain

dA
dt = 0. Then, A0 > 0 in P+.

Thus, we conclude that A, X , Y , and V are all positives in the set P+.

2.1.2 Existence and asymptotic stability of the stationary states

Let (A?,X?,Y ?,V ?) be an equilibrium of the system 2.1. It must satisfy:

−αAA?−ηA?V ? = 0

Ω−µX X?−βX?V ? = 0

βX?V ?−µYY ? = 0

kY ?−δVV ?− γV ?A? = 0

. (2.4)

Solving the 2.4 system, we obtain two equilibrium points: a disease-free P0 and an endemic P1.

Trends Comput. Appl. Math., 23, N. 1 (2022)



i
i

“A7-1417” — 2022/2/9 — 15:39 — page 106 — #6 i
i

i
i

i
i

106 A MATHEMATICAL MODEL FOR ACCESSING DHF IN INFANTS

2.1.3 The basic reproductive number R0 and the local asymptotic stability of the disease-
free steady state P0

In mathematical epidemiology, the basic reproduction number denoted by R0, is a threshold
value to determine whether or not the disease disappears.

This value is the average number of secondary cases generated by a primary infected individ-
ual, over the course of its infectious period, introduced in a wholly susceptible population [15].
Indeed, if R0 < 1 the disease extinguishes, while for R0 > 1 it persists.

The next-generation matrix method [3, 15] is the most common procedure to determine R0. In
our case, system 2.1 has two infected states, Y and V , and the disease-free equilibrium is given
by:

P0 =

(
0,

Ω

µX
,0,0

)
, (2.5)

which represents the state without infection that always exists. The linearization of the dif-
ferential equation related to (Y,V ) around the disease-free steady state P0 gives the following
system: 

dY
dt

= β

(
Ω

µX

)
V −µYY

dV
dt

= kY −δVV

.

The matrices K and T are given by:

K =

(
0 β

Ω

µX

0 0

)
T =

(
−µY 0

k −δV

)
, and T−1 =

(
− 1

µY
0

− k
µY δV

− 1
δV

)
.

With this method, R0 is defined as the dominant eigenvalue, ρ , of a matrix −KT−1, where K is
the matrix of the infection terms and T the matrix of the transition terms:

R0 := ρ
(
−KT−1) ,

from which we obtain the basic reproduction number

R0 =
1

µY

Ω

µX

k
δV

β , (2.6)

where each infected cell produces k free virus an average during its lifetime µ
−1
Y , which during

the time period δ
−1
V infects a fraction Ω

µX
of healthy cells at a rate β .

In summary, R0 is the average number of newly-infected cells produced by an infected primary
cell during its lifetime.

Theorem 2.1. The disease-free equilibrium, P0, is locally asymptotically stable if R0 < 1 and
unstable if R0 > 1.

Trends Comput. Appl. Math., 23, N. 1 (2022)
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Proof. Let the matrix J(P0), the Jacobian matrix associated with the model 2.1 analyzed at the
equilibrium point P0, given by:

J(P0) =

∣∣∣∣∣∣∣∣∣
−αA 0 0 0

0 −µX β
Ω

µX

0 0 −µY −β
Ω

µX

0 0 k −δV

∣∣∣∣∣∣∣∣∣ .
The characteristic equation is given by:

det(λ I− J(P0)) =

∣∣∣∣∣∣∣∣∣
λ +αA 0 0 0

0 λ +µX −β
Ω

µX

0 0 λ +µY β
Ω

µX

0 0 k λ +δV

∣∣∣∣∣∣∣∣∣= 0,

in which, the eigenvalues are −αA− µX . The other eigenvalues are given by the characteristic
polynomial:

λ
2 +λ (µY +δV )− kβ

Ω

µX
= 0. (2.7)

By the Routh-Hurwitz criteria, quadratic polynomials have negative eigenvalues if, and only if,
the coefficients a1 and a2 are positives. Then, we can rewrite the characteristic polynomial (2.7)
as follows:

λ
2 +a1λ +a2,

in which

a1 = µY +δV > 0,

a2 = δV µY − kβ
Ω

µX
> 0.

Since a1 and a2 are positives, by the Routh-Hurwitz criterion the roots are negative if, and only
if, R0 < 1.

2.1.4 Existence of endemic steady state P1

By the 2.4 system, we have that the endemic equilibrium point P1, in terms of R0, is given by:

P1 =

(
0,

Ω

µX

1
R0

,
µX δV

kβ
(R0−1) ,

µX

β
(R0−1)

)
.

The Jacobian matrix J of the model 2.1 evaluated at P1 is:

J(P1) =

∣∣∣∣∣∣∣∣∣
−(ηV ?+αA) 0 0 −ηA?

0 −(µX +βV ?) 0 −βX?

0 βV ? −µY βX?

−γV ? 0 k −(δV + γA?)

∣∣∣∣∣∣∣∣∣ .

Trends Comput. Appl. Math., 23, N. 1 (2022)
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108 A MATHEMATICAL MODEL FOR ACCESSING DHF IN INFANTS

Similarly, we have the endemic equilibrium point associated at characteristic equation:

det(λ I− J(P1)) = (ηV ?+αA +λ )B = 0,

where B = (µX +βV ?+λ )(λ 2+λ (µY +δV )+µY δV −kβX?)+kβ 2X?V ? and I are the identity
matrix. One of its solutions is given by:

λ =−ηV ?−αA

and the other satisfies

λ
3 +a1λ

2 +a2λ +a3 = 0,

where

a1 = µY +δV +µXR0, a2 = µXR0(µY +δV ) and a3 = µX µY δV R0.

Considering again that all parameters are positive, if R0 > 1, the Routh–Hurwitz conditions for
the stability of the linearized system are satisfied in P+, since

a1 = µY +δV +µXR0 > 0;

a3 = µX µY δV R0 > 0;

a1a2−a3 = (µY +δV +µXR0)(µXR0(µY +δV ))−µX µY δV R0

= 2µX µY δV R0 +µXR0(µ
2
Y +δ

2
V )+(µXR0)

2(µY +δV )−µX µY δV R0 > 0.

Thus, a1a2 > a3, which results in P1, is asymptotically stable, and P0 is unstable.

2.1.5 Global Stability

Here we present the global stability for the endemic equilibrium P1, based on the references
[10, 14, 16]. Let

L(W ) = h1

(
X−X?−X? ln

(
X
X?

))
+h2

(
Y −Y ?−Y ? ln

(
Y
Y ?

))
+ h3

(
V −V ?−V ? ln

(
V
V ?

))
+h4A,

with W = (A,X ,Y,V ) ∈ R∗4+ , hi, i = 1, . . .4 and L : R4→ R. Note that, L(0,X?,Y ?,V ?) = 0.

We need to prove that L(W ) > 0. Let the P(X) := X − X? − X? ln
( X

X?

)
, P(Y ) := Y −Y ? −

Y ? ln
( Y

Y ?

)
and P(V ) := V −V ?−V ? ln

( V
V ?

)
, we will show that P(X) > 0 and the result follows

analogously to P(Y ) and P(V ). Note that,

P(X) := X?

(
X
X?
−1− ln

(
X
X?

))
.

Trends Comput. Appl. Math., 23, N. 1 (2022)
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Let x = X
X? > 0, then P(X) ≥ 0, since the function g(x) = x− 1− ln(x) satisfies the following

properties:

i) g′(x) = 0⇒ x−1
x = 0⇒ x = 1 is the only critical point;

ii) g′′(x) = 1
x2 > 0;

iii) x = 1 is the global minimal point;

iv) g(1) = 0.

Thus, g(x)> 0, ∀x > 0,x 6= 1. We also note that A > 0 and therefore L(W )> 0. It is important to
note that L(W )→+∞, if ||W || →+∞, i.e., L(W ) is unbounded.

Let us now prove that L′(W )6 0. The derivative of L(W ) is:

L′(W ) = h1

(
1− X?

X

)
X ′+h2

(
1− Y ?

Y

)
Y ′+h3

(
1− V ?

V

)
V ′+h4A′.

By means of (2.1)

L′(W ) = h1

(
1− X?

X

)
(Ω−µX X−βXV )+h2

(
1− Y ?

Y

)
(βXV −µYY )

+ h3

(
1− V ?

V

)
(kY −δVV − γVA)+h4(−ηAV −αAA).

Thus, considering X ′ = 0, Y ′ = 0 and V ′ = 0 at the equilibrium point, P1, we get the following
expressions

Ω = µX X?+βX?V ?, µY = β
X?V ?

Y ?
and δV = k

Y ?

V ?
,

since A? = 0 at the equilibrium point. Then,

L′(W ) = −h1µX
(X−X?)2

X
+h1βX?V ?−h1β

(X?)2V ?

X
−h1βXV +h1βX?V

+ h2βXV −h2
Y ?

Y
βXV −h2β

X?V ?

Y ?
Y +h2β

Y ?

Y
X?V ?

Y ?
Y

+ h3kY −h3k
V ?

V
Y −h3k

Y ?

V ?
V +h3k

V ?

V
Y ?

V ?
V − γh3AV

+ γh3
V ?

V
AV +h4(−ηAV −αAA).

Choosing

h1 = h2 = 1, h3 =
βX?V ?

kY ?
and h4 =

γβX?V ?V ?

αAkY ?
.

Trends Comput. Appl. Math., 23, N. 1 (2022)



i
i

“A7-1417” — 2022/2/9 — 15:39 — page 110 — #10 i
i

i
i

i
i
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Then,

L′(W ) = −µX
(X−X?)2

X
+βX?V ?−β

(X?)2V ?

X
−βXV +βX?V

+ βXV − Y ?

Y
βXV −β

X?V ?

Y ?
Y +β

Y ?

Y
X?V ?

Y ?
Y

+

(
βX?V ?

kY ?

)
kY −

(
βX?V ?

kY ?

)
k

V ?

V
Y −

(
βX?V ?

kY ?

)
k

Y ?

V ?
V (2.8)

+

(
βX?V ?

kY ?

)
k

V ?

V
Y ?

V ?
V − γ

(
βX?V ?

kY ?

)
AV

+ γ

(
βX?V ?

kY ?

)
V ?

V
AV +

(
γβX?V ?V ?

αAkY ?

)
(−ηAV −αAA) .

Since we need to prove that L′(W )6 0, the positive terms from (2.8) need to be handled. Thus,

L′(W ) = −µX
(X−X?)2

X

+ βX?V ?

(
3−
(

X?

X
+

V XY ?

V ?X?Y
+

YV ?

Y ?V

))
− β

k
X?V ?

Y ?
γAV − γβX?V ?V ?

αAkY ?
ηAV.

Since
X?

X
V XY ?

V ?X?Y
YV ?

Y ?V
= 1 and

x1 + x2 + · · ·+ xn

n
> (x1x2 · · ·xn)

1/n ,

then,

1
3

(
X?

X
+

V XY ?

V ?X?Y
+

YV ?

Y ?V

)
> (1)1/3 = 1,

i.e., (
X?

X
+

V XY ?

V ?X?Y
+

YV ?

Y ?V

)
> 3.

Therefore, L′(W )< 0.

We also need to analyse the set of points where L′(W ) = 0. This occurs if, and only if,

X = X?,
X?

X
+

V XY ?

V ?X?Y
+

YV ?

Y ?V
= 3 and A = 0. (2.9)

Since X = X?, then dX
dt = 0. From the second equation of (2.1), V = V ?. Then, by the second

equation of the (2.9)

Y
Y ?

+
Y ?

Y
= 2,

if, and only if, Y = Y ?.

Therefore, L′(W ) = 0 has only the equilibrium point W = (0,X?,Y ?,V ?) and thus W is globally
stable.

Trends Comput. Appl. Math., 23, N. 1 (2022)
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3 NUMERICAL SIMULATIONS

Numerical simulations of the model 2.1 are presented here in order to illustrate the mathematical
analysis performed in the previous sections and also to understand DENV passive immunity. To
better understand our numerical results, let’s first consider the general assumptions as follows:

• The age of the infant is considered to be 4 to 6 months [2];

• The initial amount of antibodies is given by A0 in t0;

• The initial time of the dengue infection in the infants is t0 = 0.0.

We define parameter set as αA = 0.0301, µX = 0.0231, µY = 3.4657 and δV = 10 all in days−1,
Ω = 6×103 cells day−1, k = 1×104 RNA copies cells−1 day−1, γ = 8×10−10 ml molecules−1

day−1, η = 1×10−8 ml RNA copies−1 day−1 and β = 4×10−8 ml RNA copies−1 day−1. This
gives us R0 = 2.997 > 1 and the stability of the endemic equilibrium. The system 2.1 was solved
using the Runge-Kutta fourth-order method with initial condition as A1(0)= 1×104 in molecules
ml−1, X(0) = Ω/µX and Y (0) = 3×10−4 in cells ml−1, and V (0) = 357 RNA copies ml−1.

The scenario under study simulates primary infection by one of the dengue serotypes. t = 0.0
defines the time the infant is born and A(0) is the number of maternal antibodies received until
birthed by her immune mother.

Figure 2 shows the temporal evolution of the A(t) antibody population, susceptible and infected
cells, respectively X(t) and Y (t), and the dengue free virus V (t). This figure also shows the
behavior of the infection function, I(t) = βX(t)V (t). The arrows indicate the moment when
there is an increase in the number of infected cells, an increase in the infection function, and the
appearance of peaks in V (t), Y (t) and I(t), which occur at almost the same time. The mother’s
antibodies that are unable to neutralize the dengue virus can thus result in DHF. The dashed line
in Figure 2 (c) of the virus population represents the limit of detection of the virus measured in
plasma samples in a series of patients [17]. It is known that a large number of antibodies from
immune mothers are able, to neutralize the virus and decrease V and Y (case of disease-free
balance).

Figure 3 shows the sensitivity analysis for the R0 via partial classification correlation coefficient
(PRCC). The input parameters were chosen from a uniform distribution using latin hypercube
sampling (LHS). The value ranges for each parameter were taken from Table 2. A total of N =

10000 sets of parameters were drawn. The increase of Ω, β and k promotes the increase of R0.
The opposite effect is observed for the parameters µX , µY and δV . The order of importance related
to the contribution of each parameter to R0 is {Ω,β ,k,µX ,µY} with the largest contribution and
δV with the lowest contribution.

The most important parameters are related to the production of susceptible cells, virus
production, half-life of infected and susceptible cells, and infection rate, respectively.
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Figure 2: Temporal evolution of populations of (a) antibodies, (b) susceptible (X) and infected
(Y ) target cells, (c) virus and (d) infection I(t).
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Figure 3: Sensitivity analysis of R0.
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4 CONCLUDING REMARKS

In this paper, a nonlinear dimensional model described by ordinary differential equations was
developed to understand the basic immunological aspects related to dengue hemorrhagic fever in
infants.

This model has been analyzed mathematically. Two equilibria were found: the disease-free equi-
librium (elimination of DENV) and the endemic equilibrium (persistence of DENV over time).
A threshold called the basic reproductive number, R0 was found to be the key to the stability of
these equilibria.

By the derived local stability analysis, R0 < 1 implies that the disease-free equilibrium point is
locally asymptotically stable, which corresponds to DENV elimination. By the derived global
stability analysis, R0 > 1 implies that the endemic equilibrium point is globally stable.

We performed the sensitivity analysis that allowed us to determine the parameters that most influ-
enced the output, R0. In addition to the agreement with the analytical results, the reported numer-
ical results were used to illustrate the dynamics generated by the model, supporting discussions
of a biological nature.

In the scenario where there is the persistence of DENV (endemic balance), peak formations are
observed. Due to these peaks and also the persistence of the virus in the host organism, under the
hypothesis of passive immunity to DENV, it can be said that this behavior is an illustration of the
occurrence of the severe case of the disease (that is, DHF in infants).
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