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ABSTRACT. Scaling symmetries arise in different branches of physics, and symmetry-based approaches
are powerful tools for studying scaling-invariant models since they can provide conservation laws that are
not obvious by inspection. In this framework, the class of variable-coefficients nonlinear dispersive equa-
tions vcK(m,n), which contains several important evolution equations modeling nonlinear phenomena, is
considered. For some of its scaling-invariant subclasses, we study its nonlinear self-adjointness and con-
struct eight new local conservation laws associated with scaling symmetries by using a general theorem on
conservation laws and the multipliers method. The property of scale invariance of those equations led to five
conservation laws with a direct physical interpretation: energy, center of mass, and mass are the conserved
quantities obtained in some cases.

Keywords: scaling symmetries, variable-coefficients nonlinear dispersive equations, nonlinear self-
adjointness, conservation laws.

1 INTRODUCTION

Scaling symmetries have wide applications in science and in engineering and are far from being
a special case in physics - they can be found, for instance, in quantum physics, fluid mechanics,
turbulence, elasticity, heat diffusion, convection, filtration, gas dynamics, and also in the theory
of detonation and combustion (see [12] and references therein). Besides, scaling invariance is
closely related to the theory of fractals as well as to the general theory of dimensional analysis
and renormalization [12]. By having these considerations in mind and motivated by remarkable
features of the compacton K(m,n), introduced by Rosenau and Hyman [35], Souza and Silva [37,
38] have recently employed the Lie symmetry machinery [9, 33, 39] to build up a generalized
Rosenau-Hyman equation invariant under the scaling symmetry of standard KdV and obtained a
variable-coefficients K(m,n) (vcK(m,n) hereafter) of the form

ut +[ f (t,x)um +g(t,x)(un)xx]x = 0 , m,n > 0 , (1.1)
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430 SCALING SYMMETRIES AND CONSERVATION LAWS

where f (t,x) = c1
m tx2m−7, g(t,x) = c2

n tx2n−5, c1 and c2 non-zero constants. In [38], the pack-

age SADE [34] for Maple was used to seek for scaling-invariant solutions for vcK(2,2) and
vcK(3,3) equations and rational similarity solutions of type u(t,x) = F(x/t) were found. The
physical relevance of such solutions, also called self-similar solutions, is well known. All ratio-
nal solutions can be obtained by examining solitonic-type solutions in an appropriate limit [17].
Additionally, self-similar solutions often describe the intermediate asymptotics of a problem, i.e.,
when a system has evolved into a range of time in which neither the initial data nor the bound-
ary conditions effects dominate the solution [12]. From a mathematical point of view, similarity
solutions are taken as a standard procedure for reducing partial differential equations to ordi-
nary ones [17]. The vcK(m,n) (1.1) is a class of variable-coefficients scaling-invariant nonlinear
dispersive evolution equations which possess physically appealing solutions. Since several of its
subclasses are potentially applicable for modeling nonlinear phenomena, it is surely worthy of
further investigation.

Conservation laws are not only cornerstones of physics but also a relevant tool for studying the
integrability of partial differential equations, as well as the existence, uniqueness, and stability of
solutions. Nonlinear partial differential equations have been successfully employed to describe
evolution of a sort of physical systems. However, since commonly evolution equations do not
have an usual Lagrangian, it is not possible to associate conservation laws with their symmetries
through the celebrated Noether’s theorem [32]. Hence, one needs to seek for other approaches to
build up conservation laws if dealing with non-variational problems. As reported in [31], there are
several available routines to this end. To mention a few, Anco and Bluman proposed a direct algo-
rithm, often referred as multipliers method, for constructing local conservation laws to partial dif-
ferential equations expressed in a standard Cauchy-Kovalevskaya form [5, 6]. A partial Noether
approach due to Kara and Mahomed has proven to be quite efficient for Euler-Lagrange-type
equations [27], and there are also other methods that differ from the Noether’s or the above men-
tioned ones based on Lax pairs of nonlinear evolution equations (see, e.g., [29] and references
therein). Some years ago, Ibragimov presented a general theorem for constructing conservation
laws based on the self-adjointness concept [23,24]; later on, it was generalized to nonlinear self-
adjointness [25, 26]. Concerning classes of third-order nonlinear evolution equations, there are
several works devoted to classify them as nonlinearly self-adjoint and to construct conservation
laws via Ibragimov’s theorem [10, 11, 18, 19, 20, 21, 41, 42]. The relations between Ibragimov’s
approach and the direct method are well known [4,46,47], and the latter is also largely employed
to build up conservation laws for nonlinearly self-adjoint equations [7, 13, 15, 22, 30, 44].

In this paper we seek for conservation laws associated with scaling symmetries for scaling-
invariant subclasses of a generalized vcK(m,n). To this end, we shall consider the expanded
form of vcK(m,n) (1.1),

ut +α0(t,x,u)+α1(t,x,u)ux +α2(t,x,u)u2
x +α3(t,x,u)u3

x

+α4(t,x,u)uxuxx +α5(t,x,u)uxx +α6(t,x,u)uxxx = 0 , (1.2)

Tend. Mat. Apl. Comput., 20, N. 3 (2019)
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SILVA and SOUZA 431

with coefficients αi(t,x,u), i = 0,1, . . . ,6, written in terms of arbitrary f (t,x) and g(t,x), i.e.,

α0 = um fx , α1 = mum−1 f , α2 = n(n−1)un−2gx ,

α3 = n(n−1)(n−2)un−3g , α4 = 3n(n−1)un−2g , (1.3)

α5 = nun−1gx , α6 = nun−1g .

We study the nonlinear self-adjointness of the generalized vcK(m,n) (1.2) and illustrate our result
with some of its scaling-invariant subclasses, i.e., the time-dependent KdV, cylindrical KdV,
time-dependent mKdV, time-dependent Schamel, and vcK(m,n) (1.1). Hereafter, we construct
local conservation laws associated with scaling symmetries for particular cases of these equations
by employing a general theorem on conservation laws and the multipliers method. We highlight
that conservation laws associated with scaling symmetries can be obtained via multipliers method
by computing fluxes with no integration involved [3, 8, 14].

2 NONLINEAR SELF-ADJOINTNESS CLASSIFICATION

The partial differential equation F(x,u,u(1), . . . ,u(s)) = 0 we consider is the generalized
vcK(m,n) (1.2). According to Ibragimov’s theorem [23,24], we first write its formal Lagrangian
as

L =
[
ut +α0 +α1ux +α2u2

x +α3u3
x +α4uxuxx +α5uxx +α6uxxx

]
v , (2.1)

where t and x are the independent variables, u(t,x) and v(t,x,u) the dependent variables, and αi,
i = 0,1, ...,6, the coefficients given by relations (1.3). The adjoint equation is obtained by

F∗(x,u,v, . . . ,u(s),v(s)) :=
δL

δu
= 0 (2.2)

wherein s is the maximal order of derivatives,

δ

δu
=

∂

∂u
−Di

∂

∂ui
+DiD j

∂

∂ui j
−DiD jDk

∂

∂ui jk
+ . . . (i, j,k = 1,2) (2.3)

denotes the variational derivative, and

Di =
∂

∂xi +ui
∂

∂u
+ vi

∂

∂v
+ui j

∂

∂u j
+ vi j

∂

∂v j
... (2.4)

is the total differentiation with respect to xi (x1 = t,x2 = x). In order to obtain the adjoint equation
of vcK(m,n) (1.2), we write

F∗ =
∂L

∂u
−Dt

∂L

∂ut
−Dx

∂L

∂ux
+D2

x
∂L

∂uxx
−D3

x
∂L

∂uxxx
= 0 . (2.5)

Hence, given (2.1) and (2.5), the adjoint equation reads as

F∗ = vt +(α1 +α5x)vx +2α5vxx +α6vxxx = 0 , (2.6)

wherein α5x = nun−1gxx and the other coefficients are given by relations (1.3).

Tend. Mat. Apl. Comput., 20, N. 3 (2019)
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432 SCALING SYMMETRIES AND CONSERVATION LAWS

Definition 2.1. A partial differential equation F(x,u,u(1), . . . ,u(s)) = 0 is said to be nonlinearly
self-adjoint [25,26] if the equation obtained from the adjoint equation (2.2), after the substitution
of v = φ(t,x,u), φ 6= 0, is identical to the original equation, i.e.,

F∗|v=φ(t,x,u) = λF , (2.7)

with an undetermined coefficient λ .

We assume v = φ(t,x,u) and consider Eq. (2.6) such as F∗|v=φ(t,x,u) = λF , F given by the l.h.s.
of vcK(m,n) (1.2), to obtain

φt −α0φu +(α1 +α5x)φx +2α5φxx +α6φxxx = 0 , (2.8)

α2φu−2α5φuu−3α6φxuu = 0 , (2.9)

α4φu−3α6φuu = 0 , (2.10)

α5φu +3α6φxu = 0 . (2.11)

Therefore, if system (2.8)-(2.11) is satisfied for coefficients (1.3) and function φ(t,x,u), the
vcK(m,n) (1.2) is nonlinearly self-adjoint. As an illustration of our nonlinear self-adjointness
classification, we shall properly express coefficients (1.3) of vcK(m,n) (1.2) in order to obtain
some of its subclasses and their corresponding substitution function, φ(t,x,u).

2.1 Time-dependent KdV

Let us consider the following time-dependent KdV

ut +β (t)uux + γ(t)uxxx = 0, (2.12)

which is very useful for modeling positonic structures [40] and for describing the progression
of weakly nonlinear and weakly dispersive waves in homogeneous media [1]. It can be derived
from vcK(m,n) (1.2) by defining coefficients (1.3) as

α0 = 0 , α1 = β (t)u , α2 = · · ·= α5 = 0 , α6 = γ(t) . (2.13)

From substitution of (2.13) into (2.8)-(2.11), we get

φ(t,x,u) = k1

[
u
∫

β (t)dt− x
]
+ k2u+ k3 , (2.14)

where k1, k2, and k3 are arbitrary constants.

2.2 Cylindrical KdV

If coefficients (1.3) are written as

α0 = 0 , α1 = t−1/2u , α2 = · · ·= α5 = 0 , α6 = 1 , (2.15)

Tend. Mat. Apl. Comput., 20, N. 3 (2019)
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and if additionally we consider u(t,x) = t1/2w(t,x), the vcK(m,n) (1.2) becomes the cylindrical
KdV equation

wt +wwx +wxxx +
1
2t

w = 0 (2.16)

which appears, for instance, in plasma physics [1]. By substituting coefficients (2.15) and the
aforementioned transformation into system (2.8)-(2.11) results in

φ(t,x,w) = k1(2t3/2w− t1/2x)+ k2tw+ k3t1/2, (2.17)

wherein k1, k2, and k3 are arbitrary constants.

2.3 Time-dependent mKdV

If coefficients (1.3) of vcK(m,n) (1.2) are such that

α0 = 0 , α1 = 3 f u2 , α2 = · · ·= α5 = 0 , α6 = g, (2.18)

and if the transformation u(t,x)= 1
f w(t,x), f = f (t), is considered, we obtain the time-dependent

mKdV

wt −
f ′

f
w+

3
f

w2wx +gwxxx = 0 (2.19)

that has appeared in different physical fields, including ocean dynamics, fluid mechanics,
and plasma physics [45]. The substitution of coefficients (2.18) and the above mentioned
transformation into system (2.8)-(2.11) leads to

φ(t,x,w) =
k1

f 2 w+
k2

f
, (2.20)

where k1 and k2 are arbitrary constants.

2.4 Time-dependent Schamel

The Schamel equation [36] ut +u1/2ux + δuxxx = 0 , wherein δ is a constant, governs the prop-
agation of ion-acoustic waves in a cold-ion plasma where some of the electrons do not be-
have isothermally during the passage of the wave but are trapped in it [28]. A time-dependent
generalization of Schamel equation, i.e.,

ut +A(t)u1/2ux +B(t)uxxx = 0 , (2.21)

is obtained from vcK(m,n) (1.2) if coefficients (1.3) are given by

α0 = 0 , α1 = A(t)u1/2 , α2 = α3 = α4 = α5 = 0 , α6 = B(t) . (2.22)

It is important to emphasize that the time-dependent Schamel (2.21), which we have obtained as
a subclass of vcK(m,n) (1.2), does not correspond to the well-known time-dependent Schamel-
KdV [2]. To the best of our knowledge, equation (2.21) with coefficients (2.22) was derived for

Tend. Mat. Apl. Comput., 20, N. 3 (2019)
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434 SCALING SYMMETRIES AND CONSERVATION LAWS

the first time here. Provided that both convection and dispersion inhomogeneities of (2.21) are
time-dependent, it might be potentially useful to describe highly nonlinear behavior of electro-
static structures in cold-ion plasmas. Substitution of coefficients (2.22) into system (2.8)-(2.11)
leads to

φ(t,x,u) = k1u+ k2 , (2.23)

wherein k1 and k2 are arbitrary constants.

2.5 vcK(m,n) (1.1)

Let us now consider the vcK(m,n) (1.1),

ut +[ f (t,x)um +g(t,x)(un)xx]x = 0 ,

where f (t,x) = c1tx2m−7/m, g(t,x) = c2tx2n−5/n, c1 and c2 non-zero constants. We substitute
coefficients (1.3), with f (t,x) and g(t,x) of vcK(m,n) (1.1), into system (2.8)-(2.11) to obtain

φ(t,x,u) = A(t,x)+B(t)x−(
2
3 n− 5

3 )un ,

where A(t,x) and B(t) are related by the classifying equation

−27m
[
(4n2−22n+30)Ax +(4n−10)xAxx + x2Axxx

]
c2tx2n−7un−1

−27mAtun−1−27B′mx−
2
3 n+ 5

3 u2n−1−27c1tmx2m−7Axum−1

+4m
(
8n3−78n2 +249n−260

)
c2tx

4
3 n− 19

3 Bu2n−1

+9 [(8m−21)n−5m]c1tx2m− 2
3 n− 19

3 Bum+n−1 = 0 . (2.24)

The equation (2.24) splits into two cases:

• m 6= n. We have A(t,x) = c and B(t) = 0. Hence, φ(t,x,u) = c, c constant.

• m = n. We find B(t) = 0, and then

φ(t,x,u) = k1 + k2x
−2n+ 13

2 + 1
2

√
1− 4c1

c2 + k3x
−2n+ 13

2 −
1
2

√
1− 4c1

c2 , (2.25)

k1, k2, and k3 arbitrary constants. We assume that (1−4c1/c2)> 0 for convenience.

3 CONSERVATION LAWS BY USING A GENERAL THEOREM ON CONSERVA-
TION LAWS

The following theorem was proved by Ibragimov [23, 24].

Theorem 1 (Ibragimov’s theorem). Let

X = ξ
i(x,u,u(1), . . .)

∂

∂xi +η(x,u,u(1), . . .)
∂

∂u

Tend. Mat. Apl. Comput., 20, N. 3 (2019)
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be any Lie point, Lie-Bäcklund, or nonlocal symmetry of a given differential equation

F(x,u,u(1), . . . ,u(s)) = 0 (3.1)

and

F∗(x,u,v, . . . ,u(s),v(s)) :=
δL

δu
= 0 , (3.2)

where L = vF is the formal Lagrangian, be the adjoint equation to equation (3.1). Then the
combined system (3.1)-(3.2) has the conservation law Di(Ci) = 0, where

Ci = ξ
iL +W

[
∂L

∂ui
−D j

(
∂L

∂ui j

)
+D jDk

(
∂L

∂ui jk

)
− . . .

]
+ D j(W )

[
∂L

∂ui j
−Dk

(
∂L

∂ui jk

)
+ . . .

]
+ D jDk(W )

[
∂L

∂ui jk
− . . .

]
+ . . . , (3.3)

and W = η−ξ iui.

In what follows, we employ this general theorem on conservation laws for some particular cases
of scaling-invariant nonlinear dispersive subclasses of vcK(m,n) (1.2) we have considered1.

3.1 Time-dependent KdV

The time-dependent KdV (2.12), for β (t) = γ(t) = t, is written as

ut + tuux + tuxxx = 0 , (3.4)

whose formal Lagrangian is L = (ut + tuux + tuxxx)v.

Let us consider the scaling symmetry generator X = −4u∂u + 3t∂t + 2x∂x. By adopting x1 =

t,x2 = x and substituing v =−u, the components (3.3) of the conserved vector are given by

C1 = u2 , C2 = 2tuuxx− tu2
x +

2
3

tu3 . (3.5)

We have obtained that the conserved functional corresponding to C1 is the energy.
∫

ℜ
C1 dx is the

integral of motion associated with the invariance under time shifts, i.e., Dt
[∫

ℜ
u2 dx

]
= 0.

3.2 Cylindrical KdV

Let us now find a conservation law for the cylindrical KdV (2.16). Its formal Lagrangian assumes
the form L =

(
wt +wwx +wxxx +

1
2t w
)

v . By considering the scaling symmetry generator X =

−2w∂w +3t∂t + x∂x and substitution v = 2t3/2w− t1/2x into (3.3), we find the conserved vector

C1 =
1
2

t1/2 (tw2− xw
)
, (3.6)

C2 =
1
2

t1/2
(

2twwxx− xwxx− tw2
x +wx +

2
3

tw3− 1
2

xw2
)

. (3.7)

1The results presented in Sections 2 and 3 were obtained directly, by arduous calculations, but it is worth mentioning that
symbolic computational packages are available to this end, such as, for instance, SYM [16] for Mathematica.

Tend. Mat. Apl. Comput., 20, N. 3 (2019)
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We should say that this is a particular case of a conservation law derived for the cylindrical KdV
in [46] via multipliers method.

3.3 Time-dependent mKdV

The time-dependent mKdV (2.19), for f = t−1 and g = t, is given by

wt + t−1w+3tw2wx + twxxx = 0 , (3.8)

and its formal Lagrangian reads as L =
(
wt + t−1w+3tw2wx + twxxx

)
v . By choosing the scal-

ing symmetry generator X = −2w∂w + 3t∂t + 2x∂x and v = t2u, the corresponding conserved
vector is

C1 = t2w2 , C2 =
3
2

t3w4 +2t3wwxx− t3w2
x . (3.9)

3.4 Time-dependent Schamel

The time-dependent Schamel (2.21), for A = B = t, reads as

ut + tu1/2ux + tuxxx = 0 , (3.10)

and its formal Lagrangian as L =
(
ut + tu1/2ux + tuxxx

)
v . Let us consider the scaling symmetry

generator X = u∂u− 3
8 t∂t − 1

4 x∂x and v = u. Therefore, the components of conserved vector of
(3.10) are given by

C1 = u2 , C2 = 2tuuxx−2tu2
x +

4
5

tu5/2 . (3.11)

In this case, we have also obtained conservation of energy.

It is worth noting that a direct and relevant implication of conservation of
∫

ℜ
u2 dx is that if a

solution u(t,x) of either time-dependent KdV (3.4) or time-dependent Schamel (3.10) belongs to
the space L2(ℜ) at time t = t0, then u(t,x) ∈ L2(ℜ) for all t ≥ t0 [43].

4 CONSERVATION LAWS BY USING THE MULTIPLIERS METHOD

In 2003, Anco [3] showed within the multipliers method [5, 6] how to compute fluxes of con-
servation laws associated with scaling symmetries through a procedure that involves no integra-
tion. We follow reference [14] to briefly present this scaling-symmetry approach, restricting our
notation to the case of partial differential equations with one dependent variable.

Consider a partial differential equation F [u] = F(x,u,u(1), . . . ,u(s)) = 0, where s is the maximal
order of derivatives, written in a solved form 2. Suppose it is scaling-invariant under symmetry

X[u] = p(i)xi ∂

∂xi +qu
∂

∂u
, i = 1, . . . ,n (4.1)

2An sth-order evolution equation F(x,u,u(1), . . . ,u(s)) = 0 is written in a solved form for some leading derivative of u if
all other terms in the equation contain neither the leading derivative nor its differential consequences [4]. The subclasses
of vcK(m,n)(1.2) we consider are not only expressed in a solved form but also are equations of third-order Cauchy-
Kovalevskaya form with respect to x.

Tend. Mat. Apl. Comput., 20, N. 3 (2019)
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where p(i) and q are called constant scaling weights of independent and dependent variables,
respectively. From now on we adopt the notation “ f [u]” for meaning a function of one or more
independent variables x, a dependent variable u, and possibly derivatives of u up to some fixed or-
der [14]. In the evolutionary form, the scaling symmetry generator (4.1) reads as X̂[u] = η̂ [u]∂u ,

wherein η̂ [u] = qu− p(i)xiui.

Let us assume F [u] having a conservation law given by

Λ[u]F [u] = DiCi[u] , (4.2)

wherein Λ[u] are the multipliers of F [u] and Ci[u] the conservation law fluxes. Multipliers are
obtained by solving the system of determining equations resulting from the variational derivative
of (4.2), i.e.,

δ

δu
(Λ[u]F [u]) = 0 . (4.3)

Hence, substitutions φ [u] of nonlinear self-adjointness condition (2.7) correspond to multipliers
Λ[u] derived from (4.3), and vice-versa.

Suppose now that F [u] is homogeneous under the scaling symmetry (4.1), i.e.,

X[u]F [u] = rF [u] , (4.4)

where r = constant is the scaling weight of F [u]. Assume that conservation law (4.2) is scaling-
invariant and homogeneous under the scaling symmetry (4.1), i.e.,

X[u]DiCi[u] = PDiCi[u] , (4.5)

where P is a scaling weight of the conservation law. Then it is possible to show [8] that each
multiplier Λ[u] is homogeneous under scaling symmetry (4.1), i.e.,

X[u]Λ[u] = sΛ[u] , (4.6)

where s = P− r is the scaling weight of each Λ[u] 6= 0. Therefore, if the following condition

χ = s+ r+
n

∑
i=1

p(i) 6= 0 (4.7)

holds, the fluxes Ci[u] of homogeneously scaling conservation law of scaling-invariant F [u] can
be computed through

Ci[u] =
s−1

∑
p=0

s−p−1

∑
q=0

(−1)q (Di1 . . .Dip η̂
)

D j1 . . .D jq

(
Λ[u]

∂F [u]
∂u j1... jqii1...ip

)
, (4.8)

where s is the maximal order of derivatives appearing in F [u], j1 . . . jq and i1 . . . ip are ordered
combinations of indices such that 1≤ j1 ≤ ·· · ≤ jq ≤ i≤ i1 ≤ ·· · ≤ ip ≤ n, and n is the number
of independent variables [3, 8, 14].

Tend. Mat. Apl. Comput., 20, N. 3 (2019)
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According to [14], for scaling-invariant F [u] with scaling-homogeneous conservation law, this
scaling-symmetry approach should be the preferred one since it demands the simplest compu-
tations of fluxes within the multipliers method. Therefore, we used the package GeM [14] for
Maple to obtain fluxes of non-trivial conservation laws arising from local multipliers for partic-
ular cases of vcK(m,n) (1.1), namely vcK(2,2) and vcK(3,3), which admit rational similarity
(self-similar) solutions [38].

4.1 vcK(2,2)

The expanded form of this particular case of vcK(m,n) (1.1) is given by

ut +α0 +α1ux +α2u2
x +α4uxuxx +α5uxx +α6uxxx = 0 , (4.9)

where

α0 =−c1
3t

2x4 u2 , α1 = c1
t
x3 u , α2 =−c2

t
x2 ,

α4 = c2
3t
x
, α5 = −c2

t
x2 u , α6 = c2

t
x

u . (4.10)

For vcK(2,2) (4.9), regarding c1 =−2 and c2 = 1 in coefficients (4.10), we consider the scaling

symmetry generator X = x∂x +4u∂u and the following multipliers:

• Λ[u] = x. The corresponding density and flux are

C1 = xu , C2 = t
(
uuxx +u2

x
)
− t

x
uux−

3
2

t
x2 u2. (4.11)

This is a law of conservation of center of mass, i.e., Dt [
∫

ℜ
xu dx] = 0.

• Λ[u] = 1. The density and flux obtained are

C1 = u , C2 =
t
x

(
uuxx +u2

x
)
− t

x3 u2 . (4.12)

This result describes a law of conservation of mass, i.e., Dt [
∫

ℜ
u dx] = 0.

4.2 vcK(3,3)

In its expanded form, this particular case of vcK(m,n) (1.1) reads as

ut +α0 +α1ux +α2u2
x +α3u3

x +α4uxuxx +α5uxx +α6uxxx = 0 , (4.13)

where

α0 =−c1
t

3x2 u3 , α1 = c1
t
x

u2 , α2 = c22tu , α3 = c22tx ,

α4 = c26txu , α5 = c2tu2 , α6 = c2txu2 . (4.14)

For vcK(3,3) (4.13), regarding c1 = −6 and c2 = 1 in coefficients (4.14), we construct

conservation laws associated to the scaling symmetry X = x∂x + u∂u and the following
multipliers:

Tend. Mat. Apl. Comput., 20, N. 3 (2019)



i
i

“A3-1360-7039-1-LE” — 2019/11/11 — 11:28 — page 439 — #11 i
i

i
i

i
i

SILVA and SOUZA 439

• Λ[u] = x3. The density and flux obtained are

C1 = x3u , C2 = tx4 (u2uxx +2uu2
x
)
−3tx3u2ux + tx2u3 . (4.15)

• Λ[u] = 1. The corresponding density and flux are

C1 = u , C2 = tx
(
u2uxx +2uu2

x
)
−2

t
x

u3 . (4.16)

In this case, we have also obtained a law of conservation of mass.

5 CONCLUDING REMARKS

This work brings together interesting features of nonlinear evolution equations, such as variable
coefficients, scale invariance, and conserved quantities. An original nonlinear self-adjointness
classification for a class of variable-coefficients nonlinear dispersive vcK(m,n) was carried out.
By means of a general theorem on conservation laws and the multipliers method, eight new local
conservation laws associated with scaling symmetries for particular cases of scaling-invariant
subclasses of vcK(m,n) (1.2) were constructed. Among those eight original conservation laws,
there are five with a direct physical interpretation: energy was the conserved quantity obtained for
the particular time-dependent KdV (3.4) and time-dependent Schamel (3.10); for vcK(2,2) (4.9),
a law of conservation of center of mass and a law of conservation of mass were computed;
for vcK(3,3) (4.13), a law of conservation of mass was stablished. Additionally to the afore-
mentioned results, it is worth noting that, to the best of our knowledge, the time-dependent
Schamel (2.21), potentially useful to describe highly nonlinear behavior of electrostatic struc-
tures in cold-ion plasmas, was derived here for the first time as a subclass of vcK(m,n) (1.2). In
forthcoming studies, fractional vcK(m,n) with noninteger m,n indices can be investigated.
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RESUMO. Simetrias de escala surgem em diferentes ramos da fı́sica e abordagens
baseadas em simetria são poderosas ferramentas para estudar modelos invariantes por es-
cala, pois podem fornecer leis de conservação que não são óbvias por inspeção. Nessa
perspectiva, a classe de equações dispersivas não-lineares com coeficientes variáveis
vcK(m,n), que contém importantes equações de evolução que modelam fenômenos não-
lineares, é considerada. Para algumas de suas subclasses invariantes por simetria de escala,
estudamos sua auto-adjunticidade não-linear e construı́mos oito novas leis de conservação
locais associadas a simetrias de escala, usando um teorema geral sobre leis de conservação
e o método direto. A propriedade de invariância de escala dessas equações levou a cinco
leis de conservação com uma interpretação fı́sica direta: energia, centro de massa e massa
são as quantidades obtidas em alguns casos.

Palavras-chave: simetrias de escala, coeficientes variáveis, equações dispersivas
não-lineares, auto-adjunticidade não-linear, leis de conservação.
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