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ABSTRACT. In this paper, an approach to investigate switched affine system via matrix inequalities is
presented. Particularly, an extension of LaSalle’s invariance principle for this class of systems under ar-
bitrary dwell-time switching signal is presented. The proposed results employ a common auxiliary scalar
function and also multiple auxiliary scalar functions to study the asymptotic behavior of switched solutions
and estimate their attractors for any dwell-time switching signal. A specific feature of these results is that
the derivative of the auxiliary scalar functions can assume positive values in some bounded sets. Moreover,
a problem of constrained optimization is formulated to numerically determine the auxiliary scalar functions
and minimize the volume of the estimated attractor. Numerical examples show the potential of the theoreti-
cal results in providing information on the asymptotic behavior of solutions of the switched affine systems
under arbitrary dwell-time switching signals.

Keywords: switched affine system, invariance principle, dwell-time, attractor set.

1 INTRODUCTION

Switched systems arise in practice when modeling the operation of many systems [9]. For this
reason, important results about stability and stabilization for this class of system were presented
in [2, 5, 8].

A subclass of nonlinear switched systems, known as switched affine system, can model some
practical problems as well, especially in the area of electronics and power systems. An interesting
application of this class of systems in electrical power systems can be found in [6]. Since these
systems are subject to changes in the system equilibrium conditions due to fast varying loads, the
focus in [6] was to determine conditions to ensure that the system trajectories remain confined
into a security region of operation, even if the equilibrium point of the model changes.
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3Universidade Tecnológica Federal do Paraná (UTFPR), Av. Alberto Carazzai, 1640, 86300-000, Cornélio Procópio -
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172 AN EXTENSION OF THE INVARIANCE PRINCIPLE FOR SWITCHED AFFINE SYSTEM

An important observation about the switched affine system is that its equilibrium points change
according to the time switching signal. Therefore, in this paper we are not interested in studying
the stability of a particular equilibrium point but the asymptotic behavior of solutions.

The invariance principle is a powerful tool to study the asymptotic behavior of dynamical sys-
tem solutions. It was established for the class of nonlinear switched system in [2]. However,
less conservative results were obtained considering the extension of LaSalle’s invariance prin-
ciple. The extension of the invariance principle was firstly obtained for continuous differential
equations [14, 15] and afterwards for discrete systems [1], periodic systems [13] and switched
nonlinear systems [17].

The invariance principle presented in [3] and [17] can be used to analyze the solutions of the
switched affine system. However, the authors did not explore the particularities of the affine
system to obtain the results. For this reason, in this paper, the properties of the affine system are
explored to obtain sufficient conditions in terms of matrix inequalities to analyze the solution of
this class of systems. More specifically, extensions of the invariance principle under a common
auxiliary scalar function and also multiple auxiliary scalar functions will be presented. The main
results are useful to estimate attractors of switched affine systems under arbitrary dwell-time
switching signals.

From a practical point of view, the results proposed in this paper overcome the problem of finding
the auxiliary scalar function and also the multiple auxiliary scalar functions satisfying all the
conditions of the invariance principle presented in [17] and [3]. Moreover, the techniques that
are used enabled us to construct a constrained optimization problem, which can numerically
determine the auxiliary scalar function and the multiple auxiliary scalar functions, minimizing
the volume of the estimated attractor. Preliminary results of this work were presented in [10]
and [11]

The remainder of this paper is organized as follows. In Section 2, preliminary concepts of
switched systems are presented; in Section 3, an extension of the invariance principle for ar-
bitrary switched affine systems is presented; in Section 4, a systematic method to obtain optimal
estimates of the attractor set of affine switched systems, which explores a nonlinear optimization
problem, along with some numerical examples, is presented. Finally, the conclusion is presented
in Section 5.

The notation used in this paper is fairly standard. Specifically, N denotes the set of natural
numbers, Rn denotes the Euclidean space of dimension n and Rn×n denotes the space of real
matrices n× n. The notation ‖ · ‖ refers to the Euclidean norm, B(x,ε) denotes the open ball
{y ∈ Rn : ‖y− x‖ < ε} radius ε centered in x and B(M ,ε) =

⋃
x∈M B(x,ε). The complement

and boundary of set M is denoted by M c and ∂M respectively. For matrices or vectors, (′)
indicates transpose. In addition, for a matrix P, P > 0 indicates that P is a real symmetric and
a positive definite matrix and λmax(P), λmin(P) denote its minimum and maximum eigenvalue,
respectively.

Tend. Mat. Apl. Comput., 21, N. 1 (2020)
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2 PRELIMINARIES

Consider the following class of switched system:

ẋ = fσ(t)(x), (2.1)

where fp : Rn→ Rn is a C 1-function for all p ∈P = {1, · · · ,N }, N is the number of subsys-
tems, x(t)∈Rn is the state vector and σ(t) : [0,∞)→P is a piecewise constant function, contin-
uous from the right, called switching signal. Let {τk}k∈N be a sequence of consecutive switching
times associated with the switching signal σ and Ip = {t ∈ [τk,τk+1) : σ(τk) = p,k ∈ N} be
the union of intervals where subsystem p is active. The smooth, piecewise continuous func-
tion x : I → Rn is a solution of the switched system (2.1) in the interval I if x(t) satisfies
ẋ(t) = fσ(t)(x(t)), ∀t ∈ Ip ∩ I for all p ∈P . We assume that the sequence of switching times
{τk}k∈N is divergent and that each subsystem p is active infinite times. The set of all switching
solutions is denoted by S . We denote ϕσ(t)(t,x0), the solution of the switched system (3.1) with
initial condition x0 at the time t = 0 under switching signal σ(t).

Some preliminary definitions, which can be found in [7] and [3], are presented below for the
switched system (2.1).

Definition 2.1. The solution ϕσ(t)(t,x0)∈S has a non-vanishing dwell-time if there exists h > 0
so that infk (τk−1− τk) ≥ h where {τk}k∈N is the sequence of consecutive switching times asso-
ciated with ϕσ(t)(t,x0). The number h is called a dwell-time for ϕσ(t)(t,x0) and the set of all
solutions possessing a non-vanishing dwell-time is denoted by Sdwell ⊂S .

Definition 2.2. A point q ∈ Rn is a limit point of the continuous curve ϕσ(t)(t,x0) : [0,∞)→ Rn

if there exists a sequence {tk}k∈N, with tk→+∞ as k→+∞, so that lim
k→+∞

ϕσ(tk)(tk,x0) = q. The

set of all limit points of ϕσ(t)(t,x0) is denoted by ω+
σ (x0).

The set ω+
σ (x0) of ϕσ(t)(t,x0) depends not only on the initial condition x0 but also on the

switching signal σ .

Definition 2.3. The solution ϕσ(t)(t,x0) : [0,∞)→Rn of (2.1) is attracted to a compact set M if
for all ε > 0 there exists a time t̄ > 0 so that ϕσ(t)(t,x0) ∈ B(M ,ε) for t ≥ t̄ . Clearly, ϕσ(t)(t,x0)

is attracted to a set M , that is, ϕσ(t)(t,x0)→M , if, and only if, lim
t→∞

d(ϕσ(t)(t,x0),M ) = 0,

where d is the distance between a point and a set, which is defined by d(y,M ) = inf
m∈M

‖y−m‖.

Definition 2.4. A compact set M is weakly invariant in regard to the switched system (2.1) if for
each x0 ∈M , there exists an index p ∈P and a real number c > 0 so that ϕp(t,x0) ∈M for
any t ∈ [−c,0] or t ∈ [0,c].

The following proposition, which is proven in [3], establishes properties of the limit set ω+
σ (x0)

of bounded solutions

Proposition 2.1. Let ϕσ(t)(t,x0) ∈Sdwell be a bounded solution of (2.1) for t ≥ 0. Then, ω+
σ (x0)

is nonempty, compact and weakly invariant. Moreover, ϕσ(t)(t,x0) is attracted to ω+
σ (x0).

Tend. Mat. Apl. Comput., 21, N. 1 (2020)
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In the next section, an extension of LaSalle’s invariance principle for a subclass of switched
systems (2.1) is proposed. This extension is useful for obtaining estimates of global attractor sets
of switched affine systems.

3 AN INVARIANCE PRINCIPLE FOR SWITCHED AFFINE SYSTEMS

The purpose of this section is to analyze the asymptotic behavior of the solutions of the class of
continuous-time affine switched systems

ẋ(t) = Aσ(t)x(t)+bσ(t), x(0) = x0, (3.1)

where Ap ∈Rn×n, bp ∈Rn, ∀p∈P and σ(t) is a dwell-time switching signal, using an auxiliary
common scalar function for all subsystems of the switched system (3.1) and multiple auxiliary
scalar functions.

3.1 Results obtained via common auxiliary scalar functions

Consider a scalar quadratic function V : Rn→ R, which in the course of this text will be called
an auxiliary function, given by

V (x) = (x−d)′P(x−d), where P ∈ Rn×n and d ∈ Rn. (3.2)

In addition, suppose that

∃ P > 0 satisfying Qp = A′pP+PAp < 0, ∀p ∈P. (3.3)

Now, let Dp = {x ∈ Rn : ∇V (x)(Apx+bp) ≥ 0} be the set where the derivative of the auxiliary
function V along the trajectories of the subsystem p is positive or null and D =

⋃
p∈P Dp. Let

Ω
P,d
` = {x ∈ Rn : V (x) ≤ `, where ` ∈ R} be a sublevel set of the auxiliary function (3.2) for a

given P and d.

Lemma 1 provides sufficient conditions for the set D to be bounded by a sublevel of the auxiliary
function V .

Lemma 1. Consider the switched affine system (3.1) and the auxiliary function (3.2) such that
(3.3) is satisfied. Then, the set D is bounded and there exists a real number

` > λmax(P)(z+‖d‖)2 , (3.4)

with z = maxp∈P

{
− µp+

√
µ2

p−2λmax(Qp)ξp
λmax(Qp)

}
, µp =

∥∥b′pP−d′PAp
∥∥ and ξp =

∣∣d′Pbp
∣∣, which

ensures the inclusion D ⊂Ω
P,d
` .

Proof. The derivative of the function V along the solution of subsystem p satisfies

∇V (x)(Apx+bp) = x′Qpx+2(b′pP−d′PAp)x−2d′Pbp

≤ x′λmax(Qp)x+2
∥∥b′pP−d′PAp

∥∥‖x‖+2
∣∣d′Pbp

∣∣
= λmax(Qp)‖x‖2 +2µp ‖x‖+2ξp,

Tend. Mat. Apl. Comput., 21, N. 1 (2020)
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where µp =
∥∥b′pP−d′PAp

∥∥ and ξp =
∣∣d′Pbp

∣∣. Thus, we conclude that

∇V (x)(Apx+bp)≤ λmax(Qp)‖x‖2 +2µp ‖x‖+2ξp. (3.5)

Since (3.3) is satisfied for all p ∈P , we have that λmax(Qp)< 0. Thus, from (3.5), we conclude

that the derivative of function V is strictly negative when ‖x‖>− µp+
√

µ2
p−2λmax(Qp)ξp

λmax(Qp)
.

Then, Dp ⊆
{

x ∈ Rn : 0≤ ‖x‖ ≤ − µp+
√

µ2
p−2λmax(Qp)ξp

λmax(Qp)

}
and D =

⋃
p∈P Dp ⊆

{x ∈ Rn : 0≤ ‖x‖ ≤ z}, where z = maxp∈P

{
− µp+

√
µ2

p−2λmax(Qp)ξp
λmax(Qp)

}
. Therefore, the set

D is bounded.

Analyzing the values that the function V assumes when x ∈D , we obtain:

V (x)≤ λmax(P)‖x−d‖2 ≤ λmax(P)(‖x‖+‖d‖)2 ≤ λmax(P)(z+‖d‖)2 ,∀x ∈D .

Then, choosing ` ∈ R such that ` > λmax(P)(z+‖d‖)2, we conclude that D ⊂Ω
P,d
` . �

The next lemma guarantees the existence of a positively invariant set for the switched affine
systems under an arbitrary dwell-time switching signal.

Lemma 2. Consider the switched affine system (3.1) and the auxiliary function (3.2) such that
(3.3) is satisfied. Let ` ∈ R be a real number satisfying (3.4). If x0 ∈ Ω

P,d
` , then every solution

ϕσ(t)(t,x0) ∈Sdwell with x0 ∈Ω
P,d
` stays inside Ω

P,d
` for all t ≥ 0.

Proof. For x0 ∈ Ω
P,d
` , let ϕσ(t)(t,x0) ∈Sdwell be a solution of the switched system (3.1) under

arbitrary dwell-time switching σ(t). Suppose the existence of t̄ > 0 so that ϕσ(t̄)(t̄,x0) /∈ Ω
P,d
` .

Then, by the continuity of V and ϕσ(t)(t,x0), there exists t̃ ∈ (0, t̄ ) so that V
(
ϕσ(t̃) (t̃,x0)

)
= ` and

V (ϕσ(t)(t,x0))> `, ∀t ∈ (t̃, t̄ ]. Thus, V has to increase out of Ω
P,d
` . On the other hand, according

to Lemma 1, fixed the real number ` satisfying (3.4), D ⊂Ω
P,d
` , which leads to a contradiction.

Therefore, the solution ϕσ(t)(t,x0) ∈Sdwell stays inside Ω
P,d
` for all t ≥ 0 because every sublevel

set of the function V is bounded. �

From Lemma 1 e Lemma 2, we can prove the following invariance principle for the class of
switched affine systems using a common auxiliary function.

Theorem 3. Consider the switched affine system (3.1) and the auxiliary function (3.2) such that
(3.3) is satisfied. Then, every solution ϕσ(t)(t,x0) ∈Sdwell is attracted to a weakly invariant set

in Ω
P,d
` , where ` is given by (3.4).

Proof. First, we consider x0 ∈Ω
P,d
` , then, by Lemma 2 we have that every solution ϕσ(t)(t,x0) ∈

Sdwell stays inside Ω
P,d
` for all t ≥ 0, that is, the solution ϕσ(t)(t,x0) ∈ Sdwell is bounded. By

Proposition 2.1 we conclude that the solution will be attracted to a weakly invariant set in Ω
P,d
` .

Now, let x0 /∈ Ω
P,d
` and ϕσ(t)(t,x0) ∈Sdwell . If ϕσ(t)(t,x0) enters Ω

P,d
` at some time t, then the

result follows from the first part of this proof. Suppose the solution ϕσ(t)(t,x0) /∈ Ω
P,d
` , ∀t ≥ 0.

Tend. Mat. Apl. Comput., 21, N. 1 (2020)
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Since ` > sup
x∈D

V (x), it follows that ∂Ω
P,d
` ∩D = /0. This implies the existence of ε > 0 such that

sup
x∈
(

Ω
P,d
`

)c
∇V (x)(Apx+ bp) ≤ −ε < 0, ∀p ∈P . Therefore V (ϕσ(t)(t,x0)) is strictly decreasing,

which implies the existence of t̄ ∈ R such that ϕσ(t̄)(t̄,x0) ∈ Ω
P,d
` . By Lemma 2, the solution

ϕσ(t)(t,x0) ∈ Ω
P,d
` for all t ≥ t̄. Thus, the conclusion follows from the first part of this proof.

Therefore, every solution ϕσ(t)(t,x0) ∈Sdwell is attracted to a weakly invariant set in Ω
P,d
` . �

The following example illustrates the results of Theorem 3.

Example 3.1. Consider the switched affine system

ẋ = Aσ(t)x+bσ(t), x ∈ R2, (3.6)

where σ(t) ∈ P = {1,2,3} and A1 =

[
−4 0

2 −7

]
, b1 =

[
−9
−3

]
, A2 =

[
−1 −5

2 −6

]
,

b2 =

[
1
−6

]
, A3 =

[
−3 1

0 −1

]
, b3 =

[
5
−2

]
. The eigenvalues of the matrices Ap, p ∈

{1,2,3}, are {−7,−4},
{
− 7

2 ±
1921
992 i

}
, {−3,−1}, respectively. In addition, the equilibrium

points of each subsystem p, p ∈ {1,2,3}, are different: xeq1 =
[
− 9

4 −
15
14

]′
, xeq2 =

[
− 9

4 −
1
4

]′
and xeq3 = [1 −2]′.

With the objective of obtaining an estimate of the attractor set for the switched affine system (3.6),

consider the auxiliary function (3.2), where P and d are given by P = P1 =

[
1 −0.5

−0.5 4

]

and d = d1 =

[
2

0.5

]
, respectively. Since P1 satisfies (3.3), Lemma 1 ensures that the set D is

bounded and D ⊂Ω
P1,d1
¯̀ , where `= ¯̀= 419.5925, which satisfies (3.4). Then, from Theorem 3,

every solution ϕσ(t)(t,x0) ∈Sdwell is attracted to a weakly invariant set in Ω
P1,d1
¯̀ . Therefore, the

attractor set of the system (3.6) is contained in the ellipsoidal region Ω
P1,d1
¯̀ for any dwell-time

switching. The volume of this estimation is vol
(

Ω
P1,d1
¯̀

)
= 680.7098.

Figure 1 illustrates Ω
P1,d1
¯̀ and a trajectory starting at x0 = [−20 20]′ under switching signal

σ(t) with dwell-time h = 0.2 seconds. This figure confirms the results of Theorem 3 by showing
an attractor inside the set Ω

P1,d1
¯̀ . Function V̇ along the switching solution is shown in Figure 2.

Observe in Figure 2 the changes of sign of the derivate of V along the solution.

3.2 Results obtained via multiple auxiliary scalar functions

Although Theorem 3 provides less conservative conditions on the auxiliary function V as com-
pared to the LaSalle’s invariance principle, it still may be difficult to find such V satisfying all
assumptions of Theorem 3 for all p∈P . Moreover, the function V can not exist, or it might lead

Tend. Mat. Apl. Comput., 21, N. 1 (2020)
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Figure 1: Phase portrait for Example 3.1 with initial condition x0 = [−20 20]′ illustrating the
level set Ω

P1,d1
¯̀ and switching signal with dwell-time h = 0.2 seconds.

Figure 2: Function V̇ , defined by P1 and d1, along the switched affine system solution with initial
condition x0 = [−20 20]′.

to very conservative estimates of attractors. In order to overcome this difficulty, we will consider
now the existence of multiple auxiliary scalar C1 functions Vp : Rn→ R as follows:

Vp(x) = (x−d)′Pp (x−d) , where Pp ∈ Rn×n and d ∈ Rn. (3.7)

Henceforth, the set of functions (3.7) will be called multiple auxiliary functions. In addition, we
suppose that

∃ Pp > 0 such that Qp = A′pPp +PpAp < 0,∀p ∈P. (3.8)

Define Ep = {x ∈Rn : ∇Vp(x)(Apx+bp)≥ 0} the set where the derivate of function Vp along the
trajectories of subsystem p is positive or null. Let E =

⋃
p∈P Ep.

Tend. Mat. Apl. Comput., 21, N. 1 (2020)
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The next lemma provides sufficient conditions for the set E to be bounded.

Lemma 4. Consider the switched affine system (3.1) and the multiple auxiliary functions Vp given
by (3.7) such that (3.8) is satisfied. Then, the set E is bounded.

Proof. The derivative of Vp along the solution of the subsystem p ∈P , is given by

∇Vp(x)(Apx+bp) = x′Qpx+2(b′pPp−d′PpAp)x−2d′Ppbp

≤ λmax(Qp)x′x+2
∥∥b′pPp−d′PpAp

∥∥‖x‖+2
∣∣d′Ppbp

∣∣
= λmax(Qp)‖x‖2 +2κp ‖x‖+2ζp,

where κp =
∥∥b′pPp−d′PpAp

∥∥ and ζp =
∣∣d′Ppbp

∣∣. Thus, we conclude that

V̇p(x)≤ λmax(Qp)‖x‖2 +2κp ‖x‖+2ζp. (3.9)

Since (3.8) is satisfied for all p ∈P , we have that λmax(Qp)< 0. Then, from (3.9), we conclude

that the derivative of Vp(x) is strictly negative when ‖x‖>−κp+
√

κ2
p−2λmax(Qp)ζp

λmax(Qp)
.

Then, Ep ⊆
{

x ∈ Rn : 0≤ ‖x‖ ≤ −κp+
√

κ2
p−2λmax(Qp)ζp

λmax(Qp)

}
and E =

⋃
p∈P Ep ⊆

{x ∈ Rn : 0≤ ‖x‖ ≤ η}, where

η = max
p∈P

−κp +
√

κ2
p−2λmax(Qp)ζp

λmax(Qp)

 , (3.10)

that is, the set E is bounded. �

The next lemma guarantees the existence of upper and lower bounds for the multiple auxiliary
functions Vp given by (3.7).

Lemma 5. Consider the switched affine system (3.1) and the multiple auxiliary functions Vp

given by (3.7) such that (3.8) is satisfied. Then, there are continuous functions α,β : Rn → R
satisfying:

α(x)≤Vp(x)≤ β (x), ∀x ∈ Rn and ∀p ∈P. (3.11)

Proof. To show the existence of functions α and β satisfying (3.11) we will determine a
particular case of them. Since Pp = P′p > 0, we have

Vp(x) ≤ λmax(Pp)(x−d)′(x−d)

= (x−d)′diag[λmax(Pp), · · · ,λmax(Pp)](x−d), (3.12)

for all p ∈P and ∀x ∈ Rn. Define PM = diag[δmax, · · · ,δmax], where δmax = max
p∈P
{λmax(Pp)}.

From (3.12), we have that

Vp(x)≤ (x−d)′PM(x−d), ∀x ∈ Rn and ∀p ∈P. (3.13)

Tend. Mat. Apl. Comput., 21, N. 1 (2020)
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Thus, considering β (x) = (x− d)′PM(x− d), from (3.13) we have Vp(x) ≤ β (x), ∀p ∈P and
∀x ∈Rn. Now, define Pm = diag[δmin, · · · ,δmin], where δmin = min

p∈P
{λmin(Pp)}. Then, from (3.8),

we have that

Vp(x) ≥ λmin(Pp)(x−d)′(x−d)

= (x−d)′diag[λmin(Pp), · · · ,λmin(Pp)](x−d)

≥ (x−d)′Pm(x−d), ∀p ∈P and ∀x ∈ Rn. (3.14)

Define α(x) = (x− d)′Pm(x− d). As a consequence of (3.14), we have Vp(x) ≥ α(x), ∀p ∈
P e ∀x ∈ Rn. Therefore, the scalar functions

α(x) = (x−d)′Pm(x−d) and β (x) = (x−d)′PM(x−d),

satisfy (3.11). �

We now consider the continuous functions α,β : Rn → R, such that α(x) = (x− d)′Pm(x− d)
and β (x) = (x− d)′PM(x− d), with Pm,PM ∈ Rn×n satisfying (3.11). Moreover, we define the
sets Ω

Pm,d
`0

= {x ∈ Rn : α(x)≤ `0}, Ω
Pm,d
` j

= {x ∈ Rn : α(x)≤ ` j} and ΘPM ,d = {x ∈ Rn : β (x)≤
`0,} with sup

x∈E
β (x) < `0 < ∞ and sup

x∈Ω
Pm,d
` j−1

β (x) ≤ ` j < ∞, j ∈ {1, · · · ,N +1}. It is clear by

construction that

E ⊂Θ
PM ,d ⊆Ω

Pm,d
`0
⊆Ω

Pm,d
`1
⊆ ·· · ⊆Ω

Pm,d
` j
⊆Ω

Pm,d
` j+1
⊆ ·· · ⊆Ω

Pm,d
`N +1

. (3.15)

The next lemma estimates the values `0, · · · , `N +1 and the regions E , ΘPM ,d and Ω
Pm,d
` j

, ∀ j ∈
{0,1, . . . ,N +1}.

Lemma 6. Consider the switched affine system (3.1) and the multiple auxiliary functions Vp

given by (3.7) such that (3.8) is satisfied. Moreover, assume that α(x) = (x− d)′Pm(x− d) and
β (x) = (x−d)′PM(x−d), with Pm,PM ∈ Rn×n satisfying (3.11), then:

(i) If `0 > λmax(PM)(η +‖d‖)2, then E ⊂ΘPM ,d ⊆Ω
Pm,d
`0

where η is given by (3.10).

(ii) Given a real number `0 such that E ⊂ ΘPM ,d ⊆ Ω
Pm,d
`0

, then Ω
Pm,d
` j−1
⊆ Ω

Pm,d
` j

, ∀ j ∈

{1, . . . ,N +1}, if ` j ≥ λmax(PM)
λmin(Pm)

` j−1.

Proof.

(i) Due to Lemma 4, the inclusion E ⊆ {x ∈ Rn : 0≤ ‖x−d‖ ≤ η}, where η is given by
(3.10), is verified. Then, when we analyze the values the continuous function β : Rn→ R,
given by β (x) = (x−d)′PM (x−d), assumes in E , we obtain

β (x)≤ λmax(PM)‖x−d‖2 ≤ λmax(PM)(η +‖d‖)2 ,∀x ∈ E .

Thus, for `0 ∈ R satisfying `0 > λmax(PM)(η +‖d‖)2, we conclude that E ⊂ ΘPM ,d .
Therefore, by construction of the set Ω

Pm,d
`0

, we have that E ⊂ΘPM ,d ⊆Ω
Pm,d
`0

.

Tend. Mat. Apl. Comput., 21, N. 1 (2020)
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(ii) The proof will be given by induction on the index j ∈ {1, · · · ,N +1}. For N = 1, we can
show that Ω

Pm,d
`0
⊆ Ω

Pm,d
`1

, when `1 ≥ λmax(PM)
λmin(Pm)

`0. In fact, if x ∈ Ω
Pm,d
`0

, then λmin(Pm)||x−

d||2 ≤ α(x) ≤ `0,∀x ∈ Ω
Pm,d
`0

. Hence, ‖x−d‖2 ≤
(

`0
λmin(Pm)

)
, ∀x ∈ Ω

Pm,d
`0

. For x ∈ Ω
Pm,d
`0

,
we have that

β (x)≤ λmax(PM)‖x−d‖2 ≤ λmax(PM)

(
`0

λmin(Pm)

)
≤ λmax(PM)

λmin(Pm)
`0,

for all x ∈Ω
Pm,d
`0

.

Thus, by defining `1≥ λmax(PM)
λmin(Pm)

`0, we have that ΘPM ,d ⊆Ω
Pm,d
`0
⊆Ω

Pm,d
`1

since sup
x∈Ω

Pm,d
`0

β (x)≤

`1 < ∞ is verified.

Next, we assume the result holds for N subsets, that is, the real numbers `0 ∈ R
and ` j ≥ λmax(PM)

λmin(Pm)
` j−1, j ∈ {1, . . . ,N }, ensure that Ω

Pm,d
`0
⊆ Ω

Pm,d
`1
⊆ ·· · ⊆ Ω

Pm,d
`N −1

⊆
Ω

Pm,d
`N

. Now, we show that the result holds for N + 1. For all x ∈ Ω
Pm,d
`N

, we have that

‖x− d‖2 ≤
(

`N
λmin(Pm)

)
. For x ∈ Ω

Pm,d
`N

, the following inequalities are satisfied β (x) ≤

λmax(PM)‖x−d‖2 ≤
[

λmax(PM)
λmin(Pm)

]
`N , for all x ∈Ω

Pm,d
`N

. Therefore, for `N +1 ≥ λmax(PM)
λmin(Pm)

`N ,

we have Ω
Pm,d
`N
⊆Ω

Pm,d
`N +1

. �

In order to take into account multiple auxiliary functions, we consider the following assumption.

Assumption 3.1. For every pair of consecutive switching times τh < τ j such that σ(τh)=σ(τ j)=

p the following holds:

Vp(ϕp(τh,x0))>Vp(ϕp(τ j,x0)), if ϕp(τh,x0) /∈Θ
PM ,d and ϕp(τ j,x0) /∈Θ

PM ,d .

The next result shows that every solution of the affine switched system (3.1) is bounded.

Lemma 7. Consider the switched affine system (3.1) and the multiple auxiliary functions Vp given
by (3.7) such that (3.8) is satisfied. Moreover, we assume that Assumption 3.1 is satisfied. Then,
every solution ϕσ(t)(t,x0) ∈Sdwell , x0 ∈ Rn, is bounded.

Proof. Let `0 ∈ R such that `0 > λmax(PM)(η +‖d‖)2 and η is given by (3.10). For x0 ∈Ω
Pm,d
`0

,
let ϕσ(t)(t,x0) ∈ Sdwell be a solution of the switched system (3.1) under arbitrary dwell-time
switching signals. Then, by Lemma 3 in [17], we have that every solution ϕσ(t)(t,x0) ∈Sdwell

stays inside Ω
Pm,d
`0

, ∀t ≥ 0, that is, the solution ϕσ(t)(t,x0) ∈S is bounded.

Now, let x0 /∈ Ω
Pm,d
`0

and ϕσ(t)(t,x0) ∈ Sdwell . If ϕσ(t)(t,x0) enters Ω
Pm,d
`0

at some t, then the

result follows from the first part of this proof. Suppose that the solution ϕσ(t)(t,x0) /∈ Ω
Pm,d
`0

,

∀t ≥ 0. Let L0 ∈ R such that supx∈E β (x) < `0 < L0 and x0 ∈ Ω
Pm,d
L0

= {x ∈ Rn : α(x) ≤ L0}.
Define Ω

Pm,d
L j

= {x ∈Rn : α(x)≤ L j} with sup
x∈Ω

Pm,d
L j−1

β (x)≤ L j < ∞, j ∈ {1, · · · ,N +1}. Then the

Tend. Mat. Apl. Comput., 21, N. 1 (2020)
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following inclusion holds E ⊂ ΘPM ,d ⊆ Ω
Pm,d
L0
⊆ Ω

Pm,d
L1
⊆ ·· · ⊆ Ω

Pm,d
L j
⊆ Ω

Pm,d
L j+1
⊆ ·· · ⊆ Ω

Pm,d
LN +1

.
Due to the existence of the multiple functions Vp given by (3.7) and Assumption 3.1, the Lemma
3 in [17] again implies that if x0 ∈ Ω

Pm,d
L0

, then ϕσ(t)(t,x0) ∈Sdwell stays inside Ω
Pm,d
LN +1

, ∀t ≥ 0,

that is, the solution ϕσ(t)(t,x0) ∈Sdwell with x0 /∈Ω
Pm,d
`0

is bounded.

Therefore, every solution ϕσ(t)(t,x0)∈Sdwell of the switched system (3.1) under arbitrary dwell-
time switching signal σ(t) is bounded. �

Exploring the above results, next theorem establishes an extension of the invariance principle by
means of multiple auxiliary scalar functions.

Theorem 8. Consider the switched affine system (3.1) and the multiple auxiliary functions Vp

given by (3.7) such that (3.8) is satisfied. Moreover, we assume that Assumption 3.1 is satisfied.
Then every solution ϕσ(t)(t,x0) ∈Sdwell , x0 ∈Rn, is attracted to the largest weakly invariant set

of Ω
Pm,d
`N +1

.

Proof. First, we consider x0 ∈ ΘPM ,d . Note that, in the hypotheses of this theorem, the Assump-
tion 3.1 and the inequalities (3.7) and (3.8) are satisfied. Then, by Lemma 7 and Lemma 3 in [17],
we have that every solution ϕσ(t)(t,x0) ∈Sdwell is bounded and stays inside Ω

Pm,d
`N +1

for all t ≥ 0.
By Proposition 2.1 we conclude that the solution will be attracted to a weakly invariant set in
Ω

Pm,d
`N +1

.

Now let x0 /∈ ΘPM ,d and ϕσ(t)(t,x0) ∈Sdwell . If there exists t̄ > 0 such that ϕσ(t̄)(t̄,x0) ∈ ΘPM ,d ,
then the proof follows from the first part of this proof. Suppose the solution ϕσ(t)(t,x0) ∈Sdwell

does not enter ΘPM ,d . Due to Lemma 7, we have that solution ϕσ(t)(t,x0) ∈Sdwell is bounded.
Consider the subsequence of switching times

{
τkp

}
at which the system p becomes active,

that is, σ(τkp) = p. From Assumption 3.1, we have that Vp(ϕσ(τkp )
(τkp ,x0)) is a decreas-

ing sequence of real numbers bounded from bellow. Then, Vp(ϕσ(τkp )
(τkp ,x0)) → rp where

k→ +∞ for all p ∈P . By Proposition 2.1, ω+
σ (x0) is a nonempty and weakly invariant set.

Let c ∈ ω+
σ (x0), then there exists a sequence {t j} such that ϕσ(t j)(t j,x0)→ c as j→ ∞. Since

the set P is finite, there exists at least one index p ∈P and a subsequence {t ji} such that
t ji ∈ Ip. Then, Vp(ϕσ(t ji )

(t ji ,x0)) → Vp(c) = rp for all c ∈ ω+
σ (x0). Using the same ideas of

the proof of Proposition 2 in [3], we can guarantee the existence of an interval [ε,γ] contain-
ing the origin and functions υ j(t) = ϕσ(t+t j)(t + t j,x0) defined on [ε,γ], satisfying the follow-
ing properties: υ j(t) uniformly converges to υ(t) on [ε,γ], υ(t) ⊂ ω+

σ (x0) for all t ∈ [ε,γ],
υ̇(t) = Ap(υ(t))+bp and υ(0) = c. Then Vp(υ(t)) = rp and ∇Vp(υ(t)) [Ap(υ(t))+bp] = 0 for
all t ∈ [ε,γ]. Particularly, for t = 0, ∇Vp(υ(0)) [Ap(υ(0))+bp] = ∇Vp(c) [Ap(υ(c))+bp] = 0,
then c ∈ {x ∈ Rn : ∇Vp(x)(Apx+ bp) = 0} and ω+

σ (x0) ⊂ {x ∈ Rn : ∇Vp(x)(Apx+ bp) = 0} ⊆
ΘPM ,d . The set ω+

σ (x0) is a weakly invariant set, then the solution is attracted to the largest
weakly invariant in {x ∈ Rn : ∇Vp(x)(Apx+ bp) = 0}, which leads to a contradiction because
{x ∈ Rn : ∇Vp(x)(Apx+ bp) = 0} ⊆ ΘPM ,d . Thus, there exists t̃ ∈ R such that ϕ(t̃,x0) ∈ ΘPM ,d

and the result follows from the first part of this proof.

Tend. Mat. Apl. Comput., 21, N. 1 (2020)
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Therefore, every solution ϕσ(t)(t,x0) ∈Sdwell is attracted to the largest weakly invariant set in
Ω

Pm,d
`N +1

. �

The following example illustrates Theorem 8.

Example 3.2. ( [12]) Consider the affine switched system

ẋ = Aσ(t)x+bσ(t), x ∈ R2, (3.16)

where, σ(t) ∈P = {1,2} and A1 =

[
−4 1

2 −7

]
, b1 =

[
2
1

]
, A2 =

[
−7 −5

3 0

]
, b2 =[

0
−3

]
. The eigenvalues of the matrices Ap, p ∈ {1,2}, are {−3.4384,−7.5616} and

{−3.5±1.6583i}, respectively. In addition, the equilibrium points of each subsystem p, p ∈
{1,2}, are given by: xeq1 = [0.5769 0.3077]′ and xeq2 = [1 −1.4]′.

With the objective of obtaining an estimate of the attractor set for the switched affine system

(3.16), consider the auxiliary functions (3.7), with P1 = P11 =

[
0.6507 0.1375
0.1375 0.3493

]
and P2 =

P21 =

[
0.1133 0.0688
0.0688 0.3475

]
satisfying (3.8) and the vector d = d1 = [1 0.5]′. From Lemma 6, we

can conclude that E ⊂Θ
PM1 ,d1 ⊆Ω

Pm1 ,d1
ˆ̀0

⊆Ω
Pm1 ,d1
ˆ̀1

⊆Ω
Pm1 ,d1
ˆ̀2

⊆Ω
Pm1 ,d1
ˆ̀3

, as `0 = ˆ̀0 = 9.3252 >

λmax(PM1)(η +‖d1‖)2, where η is given by (3.10), ˆ̀1 = 22.1834, ˆ̀2 = 52.7716, ˆ̀3 = 125.5371,

PM =PM1 =

[
0.7040 0

0 0.7040

]
and Pm =Pm1 =

[
0.2960 0

0 0.2960

]
. Then, from Theorem 8,

every solution ϕσ(t)(t,x0)∈Sdwell is attracted to a weakly invariant set in Ω
Pm1 ,d1
ˆ̀3

. Therefore, the

attractor set of the system (3.16) is contained in the ellipsoidal region Ω
Pm1 ,d1
ˆ̀3

for any dwell-time

switching signal. The volume of this estimation is vol
(

Ω
Pm1 ,d1
ˆ̀3

)
= 1332.58.

Figure 3 illustrates Ω
Pm1 ,d1
ˆ̀3

and a trajectory starting at x0 = [110 85]′ with switching signal σ(t)
with dwell-time h = 0.2 seconds. This figure confirms the results of Theorem 8 by showing an
attractor inside the set Ω

Pm1 ,d1
ˆ̀3

. Function ∇Vp(x)(Apx+ bp), p ∈P , along the solution of the
switched affine system (3.16) is shown in Figure 4. Observe in Figure 4 the changes of sign of the
derivate of V along the solution.

4 ESTIMATING THE ATTRACTOR SET BY OPTIMIZATION

In this section, the results of Section 3 are explored to obtain a systematic method to find the
common auxiliary function or multiple auxiliary functions for the switched affine system in or-
der to determine an estimate of the attractor as small as possible. For this purpose, a constrained
optimization problem where the restrictions are given by the sufficient conditions of the invari-
ance principle has been considered. Using this new procedure, Examples 3.1 and 3.2 are solved

Tend. Mat. Apl. Comput., 21, N. 1 (2020)
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Figure 3: Phase portrait for Example 3.2 with initial condition x0 = [110 85]′ illustrating the

level set Ω
Pm1 ,d1
ˆ̀3

and switching signal with dwell-time h = 0.2 seconds.

Figure 4: Function ∇Vp(x)(Apx+bp), defined by P11, P21 and d1, along the switched affine system
solution with initial condition x0 = [110 85]′.

again to show that the new estimates of the attractor have smaller volume than the estimates ob-
tained previously by trial and error. To obtain the solution of the optimization problems in the
next examples, we have used the function ga, of the Global Optimization Toolbox of Matlab,
which is a Genetic Algorithm which explores the technique of heuristic optimization, inspired
by biological evolution, to solve the optimization problem [16].

4.1 Common auxiliary function

Theorem 3 ensures that the sublevel set Ω
P,d
` , associated with the common auxiliary function

(3.2), is an estimate of the attractor set for the switched affine system (3.1) under arbitrary dwell-

Tend. Mat. Apl. Comput., 21, N. 1 (2020)
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time switching. However, it is clear from Lemma 1 and Example 3.1 that the size of set Ω
P,d
` is

related to matrix P ∈ Rn×n and the vector d ∈ Rn.

Thus, we are interested in finding a matrix P > 0 and a vector d ∈ Rn such as (P,d) minimizes
the volume of the set Ω

P,d
` . For this purpose, we considered the next optimization problem. Note

that this problem can be constructed due to the format of the assumptions of Theorem 3.

Optimization Problem 4.1.

minimize − ln(det(P)) (4.1)

subject to P > 0 (4.2)

Qp < 0,∀p ∈P (4.3)

λmax (PM)(zp +‖d‖)2−1 < 0,∀p ∈P (4.4)

where

P ∈ Rn×n,d ∈ Rn, Qp = A′pP+PAp ∈ Rn×n,∀p ∈P,

µp =
∥∥b′pP−d′PAp

∥∥ , ∀p ∈P, ξp =
∣∣d′Pbp

∣∣ , ∀p ∈P,

zp =−
µp +

√
µ2

p−2λmax(Qp)ξp

λmax(Qp)
,∀p ∈P.

The next theorem establishes the formulation for finding an estimate of the attractor set of the
switched affine system (3.1) with minimum volume. In this theorem, the estimate of the attractor
set is formulated into an optimization problem.

Theorem 1. Suppose that the pair (P,d) is a solution for the Optimization Problem 4.1. Then,
Ω

P,d
1 is an estimate of the attractor set for the switched affine system (3.1) with minimum volume,

that is, every solution ϕσ(t)(t,x0) ∈Sdwell is attracted to a weakly invariant set in Ω
P,d
1 .

Proof. Let P ∈ Rn×n and d ∈ Rn be a solution to the Optimization Problem 4.1. Then,

Ω
P,d
1 =

{
x ∈ Rn : (x−d)′P(x−d)< 1

}
=
{

x ∈ Rn : (x−d)′P(x−d)< `
}
= Ω

P,d
` ,

where P = 1
`P. Moreover, the constraints of the optimization problem (4.2)−(4.3) are equivalent

to (3.3) and (3.4). Thus, from Theorem 3, it follows that every solution ϕσ(t)(t,x0) ∈Sdwell is
attracted to a weakly invariant set in Ω

P,d
1 . Since the volume of Ω

P,d
1 is proportional to (det(P))1/2

[4], minimizing this determinant is equivalent to minimizing − ln(det(P)) and therefore, the
proof is complete. �

We can obtain the matrix P and the vector d satisfying Theorem 1 by solving the Optimization
Problem (4.1) via numerical algorithms. In other words, a computational procedure based on
nonlinear optimization to estimate the attractor set for the switched affine systems, under arbitrary
dwell-time switching, is obtained by exploring Theorem 1.

Tend. Mat. Apl. Comput., 21, N. 1 (2020)
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The next Procedure 4.1 explores Theorem 1 to estimate the attractor set of the switched affine
systems (3.1) under arbitrary dwell-time switching signals.

Procedure 4.1.

• Input: Ap ∈ Rn×n, bp ∈ Rn, p ∈P .

• Output: Ω
P,d
1 (an estimate the attractor set of switched affine systems (3.1) obtained via

Theorem 1).

1. Find the positive definite matrix P ∈ Rn×n and the vector d ∈ Rn, solving
Optimization Problem 4.1.

2. Calculate the volume of the set Ω
P,d
1 .

Example 4.1 explores Theorem 4.1 and Procedure 4.1 to solve Example 3.1 again, in order to
obtain a better estimate of the attractor set of the switched affine system (3.6) under arbitrary
switching signal.

Example 4.1. Consider the switched affine system (3.6) presented in Example 3.1. Following

the Procedure 4.1, we can find the local optimal solution P =

[
0.0246 −0.0006
−0.0006 0.0394

]
and d =[

0.0841
0.7245

]
, which defines the ellipsoidal region Ω

P,d
1 centered at d with vol

(
Ω

P,d
1

)
= 100.8775.

Then, from Theorem 4.1, every solution ϕσ(t)(t,x0)∈Sdwell is attracted to a weakly invariant set

in Ω
P,d
1 . Therefore, the attractor set of the system (3.6) is contained in the ellipsoidal region Ω

P,d
1

for any dwell-time switching signal. Moreover, we can confirm that the estimate of the attractor
set obtained by using Procedure 4.1 is better than those presented in Example 3.1, whose volume
is vol

(
Ω

P1,d1
¯̀

)
= 680.7098.

Figure 5 illustrates the trajectory of the switched affine system with x0 = [−15 27]′ under a dwell-
time switching signal with h = 0.2 seconds, and, the estimate of Ω

P1,d1
¯̀ , obtained in Example 3.1,

and Ω
P,d
1 , obtained by using Procedure 4.1. The attractor set is contained in Ω

P,d
1 , confirming the

results of Theorem 4.1.

4.2 Multiple auxiliary functions

The results established in Subsection 8 ensure that the set Ω
Pm,d
`N +1

, associated with the scalar
function α(x), given by α(x) = (x−d)Pm(x−d), where Pm ∈Rn×n, is an estimate of the attractor
set of the switched system affine (3.1) for any dwell-time switching signal σ(t). However, it is
evident from the hypotheses of Theorem 8 that the size of Ω

Pm,d
`N +1

, is related to the positive
definite matrices P1, · · · ,PN , Pm, PM ∈Rn×n and the vector d ∈Rn. Then, at this moment, we are
interested in finding matrices P1, · · · ,PN , Pm, PM ∈ Rn×n and vector d ∈ Rn that minimize the

Tend. Mat. Apl. Comput., 21, N. 1 (2020)
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Figure 5: The estimates Ω
P,d
1 and Ω

P1,d1
¯̀ of the attractor set and a solution ϕσ(t)(t,x0), x0 =

[−15 27]′, of the switched affine system (3.6) under a switching signal σ(t) with dwell-time
h = 0.2 seconds.

volume of the set Ω
Pm,d
`N +1

. For this purpose, we consider the next optimization problem. Note that
this problem can be constructed due to the format of the assumptions of Theorem 8.

Optimization Problem 4.2.

minimize − ln(det(Pm)) (4.5)

subject to Pp > 0, ∀p ∈P (4.6)

Qp < 0, ∀p ∈P (4.7)

Pm−Pp < 0, ∀p ∈P (4.8)

Pp−PM < 0, ∀p ∈P (4.9)

λmax(PM)(ηp +‖d‖)2−1 < 0, ∀p ∈P (4.10)

Pm > 0 (4.11)

PM > 0 (4.12)

where

Pp ∈ Rn×n,∀p ∈P,Pm,∈ Rn×n,PM ∈ Rn×n,d ∈ Rn,

Qp = A′pPp +PpAp,∀p ∈P,

κp =
∥∥b′pPp−d′PpAp

∥∥ ,∀p ∈P,

ζp =
∣∣d′Ppbp

∣∣ ,∀p ∈P,

ηp =−
κp +

√
κ2

p−2λmax(Qp)ζp

λmax(Qp)
,∀p ∈P.

Tend. Mat. Apl. Comput., 21, N. 1 (2020)
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The next result allows us to find an estimate of the attractor set of switched affine system 3.1
with minimum volume under arbitrary switching signal by exploring Theorem 8. In this result,
the estimation of the attractor set is formulated as a nonlinear optimization problem.

Theorem 2. Suppose that (P1, . . . ,PN ,Pm,PM,d) is a solution of the Optimization Problem 4.2.

Consider that Assumption 3.1 is satisfied and ` j ≥
λmax(PM)

λmin(Pm)
` j−1, ∀ j ∈ {1, . . . ,N + 1}. Then,

Ω
Pm,d
`N +1

is an estimate of the attractor set of the switched affine system (3.1) with minimum vol-
ume for any arbitrary dwell-time switching signal, that is, every solution ϕσ(t)(t,x0) ∈Sdwell is

attracted to a weakly invariant set in Ω
Pm,d
`N +1

.

Proof. Consider that (P1, . . . ,PN ,Pm,PM,d) is a solution for the Optimization Problem 4.2. From
constraints (4.6) - (4.7) and from the first N coordinates of the solution of the Optimization
Problem 4.2, it is possible to write the functions Vp as (3.7) such that (3.8) is satisfied. Using
(4.8) and (4.9), we can define α(x) = (x−d)′Pm(x−d) and β (x) = (x−d)′PM(x−d) satisfying
(3.11). Rewriting (4.10), we have λmax(PM)(ηp +‖d‖)2 < 1, ∀p ∈P , that is, by Lemma 6,

one guarantees that (3.15) is satisfied, where `0 = 1, ` j ≥
λmax(PM)

λmin(Pm)
` j−1, ∀ j ∈ {1, . . . ,N + 1}

and η is given by (3.10). Since Assumption 3.1 is considered, every hypothesis of Theorem 2
is satisfied. Therefore, every solution of the switched affine system (3.1) under arbitrary dwell-
time switching signal, ϕσ(t)(t,x0) ∈ Sdwell , with x0 ∈ Rn, is attracted to the largest invariant
set in Ω

Pm,d
`N +1

. Since the volume of Ω
Pm,d
1 is proportional to (det(Pm))

1/2 [4], minimizing this
determinant is equivalent to minimizing − ln(det(Pm)) and the proof is complete. �

Positive definite matrices P1,. . . ,PN , Pm, PM ∈ Rn×n and a vector d ∈ Rn, which satisfy The-
orem 2, are obtained by numerically solving the Optimization Problem 4.2. In other words,
(P1, . . . ,PN ,Pm,PM,d) can be systematically calculated to obtain a good estimate of the attractor
set.

Exploring Theorem 2, the next procedure is defined to estimate the attractor set of switched affine
systems (3.1) under arbitrary dwell-time switching.

Procedure 4.2.

• Input: Ap ∈ Rn×n, bp ∈ Rn, p ∈P .

• Output: Ω
Pm,d
`N +1

(estimate of the attractor set of the system (3.1) obtained via Theorem 2.)

1. Find the positive definite matrices P1, . . . , P̀
N

, Pm, PM ∈Rn×n and the vector d ∈Rn,
by solving the Optimization Problem 4.2.

2. Since `0 = 1, for j ∈ {1, . . . ,N +1},

∗ calculate ` j ≥
λmax(PM)

λmin(Pm)
` j−1.

Tend. Mat. Apl. Comput., 21, N. 1 (2020)
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3. Calculate the volume of the set Ω
Pm,d
`N +1

.

Example 4.2 explores Theorem 2 under Procedure 4.2 to obtain a better estimate of the attractor
set as compared to the estimate obtained in Example 3.2.

Example 4.2. Consider the switched affine system of (3.16) presented in Example 3.2. Us-
ing the Procedure 4.2 and solving the Optimization Problem 4.2, we obtain the local opti-

mal solution P1 =

[
0.4759 0.0938
0.0938 0.4983

]
, P2 =

[
0.5625 0.0170
0.0170 0.5663

]
, Pm =

[
0.4758 0.0938
0.0938 0.4982

]
, PM =[

0.5816 0
0 0.58160

]
, d =

[
−0.3110

0.1157

]
and the scalars `0 = 1, `1 = 1.4815, `2 = 2.1951 and

`3 = 3.2522. Then, from Theorem 2, every solution ϕσ(t)(t,x0) ∈Sdwell is attracted to a weakly

invariant set in Ω
Pm,d
`3

. Therefore, the attractor set of the system (3.16) is contained in the el-

lipsoidal region Ω
Pm,d
`3

for any dwell-time switching signal. The volume of this estimation is

vol
(

Ω
Pm,d
`3

)
= 21.3861. Moreover, we can confirm that the estimate of the attractor set ob-

tained by using Procedure 4.2 is better than the one presented in Example 3.2, whose volume
is vol

(
Ω

Pm1 ,d1
ˆ̀3

)
= 1332.58.

Figure 6 illustrates the trajectory of the switched affine system with x0 = [90 27]′ under a dwell-

time switching signal with h= 0.2 seconds, and, the estimate of Ω
Pm1 ,d1
ˆ̀3

, obtained in Example 3.2,

and Ω
Pm,d
`3

, obtained by using Procedure 4.2. The attractor set is contained in Ω
Pm,d
`3

, confirming
the results of Theorem 2.

Figure 6: Phase portrait for Example 3.2 with initial condition x0 = [90 27]′ illustrating the level

sets Ω
Pm,d
`3

, Ω
Pm1 ,d1
ˆ̀3

and switching signal with dwell-time h = 0.2 seconds.
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5 CONCLUSION

In this paper, we have studied the asymptotic behavior of the solutions of the class of switched
affine systems under arbitrary dwell-time switching signal exploring the specific structure of
these systems.

The invariance principles proposed in this paper were obtained via a common auxiliary scalar
function and multiple auxiliary scalar functions. These principles offer estimates of the attractor
set of the switched affine systems (3.1) in terms of an ellipsoidal sublevel set for any dwell-
time switching signal. Exploring the invariance principle and a nonlinear optimization problem,
optimal estimates of the attractor set were obtained. Illustrative examples show the potential
of the theoretical results in providing information on the asymptotic behavior of solutions of
switched affine systems under arbitrary dwell-time switching signals.
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RESUMO. Neste artigo, uma abordagem para investigar o sistema chaveado afim por
meio de desigualdades matriciais é apresentado. Particularmente, uma extensão do princı́pio
de invariância de LaSalle para esta classe de sistemas sob sinal chaveamento dwell-time
arbitrário é apresentado. Os resultados propostos empregam uma função escalar auxiliar
comum e também múltiplas funções escalares auxiliares para estudar o comportamento
assintótico das soluções chaveadas e estimar seus atratores para qualquer sinal de chavea-
mento dwell-time. Uma caracterı́stica especifica destes resultados é que a derivada das
funções escalares auxiliares podem assumir valores positivos em alguns conjuntos limi-
tados. Além disso, um problema de otimização restrita é formulado para determinar nu-
mericamente as funções escalares auxiliares e minimizar o volume do atrator estimado.
Exemplos numéricos mostram o potencial dos resultados teóricos em fornecer informações
sobre o comportamento assintótico das soluções do sistema chaveado afim sob sinais de
chaveamento dwell-time arbitrários.

Palavras-chave: sistema chaveado afim, princı́pio de invariância, dwell-time, conjunto de
atrator.

REFERENCES

[1] L.F.C. Alberto, T.R. Calliero & A.C.P. Martins. An Invariance Principle For Nonlinear Discrete Au-
tonomous Dynamical Systems. Automatic Control, IEEE Transactions on, 52(4) (2007), 692–697.
doi:10.1109/TAC.2007.894532.

[2] A. Bacciotti & F. Ceragioli. Stability and stabilization of discontinuous systems and nonsmooth
lyapunov functions. ESAIM: Control Optimisation and Calculus of Variations, 4 (1999), 361–376.

Tend. Mat. Apl. Comput., 21, N. 1 (2020)



i
i

“TEMA˙V21N1˙1341” — 2020/4/22 — 13:30 — page 190 — #20 i
i

i
i

i
i

190 AN EXTENSION OF THE INVARIANCE PRINCIPLE FOR SWITCHED AFFINE SYSTEM

[3] A. Bacciotti & L. Mazzi. An invariance principle for nonlinear switched systems. Systems & Control
Letters, 54(11) (2005), 1109 – 1119. doi:http://dx.doi.org/10.1016/j.sysconle.2005.04.003.

[4] S. Boyd, L. El Ghaoui, E. Feron & V. Balakrishnan. “Linear Matrix Inequalities in System and Control
Theory”. SIAM studies in applied mathematics: 15 (1994).

[5] M.S. Branicky. Multiple Lyapunov functions and other analysis tools for switched and hybrid systems.
IEEE Transactions on Automatic Control, 43(4) (1998), 475–482. doi:10.1109/9.664150.

[6] R. Kuiava, R.A. Ramos, H.R. Pota & L.F.C. Alberto. Practical stability of switched systems without a
common equilibria and governed by a time-dependent switching signal. European Journal of Control,
19(3) (2013), 206 – 213. doi:http://dx.doi.org/10.1016/j.ejcon.2012.11.001.

[7] D. Liberzon. “Switching in Systems and Control”. Birkhäuser Basel (2003).
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