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ABSTRACT. In this article, an adaptive version of the restarted GMRES (GMRES(im)) is introduced
for the resolution of the finite difference approximation of the Helmholtz equation. It has been observed
that the choice of the restart parameter m strongly affects the convergence of standard GMRES(m). To
overcome this problem, the GMRES(m) is formulated as a control problem in order to adaptively combine
two strategies: a) the appropriate variation of the restarted parameter m, if a stagnation in the convergence
is detected; and b) the augmentation of the search subspace using vectors obtained at previous cycles.
The proposal is compared with similar iterative methods of the literature based on standard GMRES (i)
with fixed parameters. Numerical results for selected matrices suggest that the switching adaptive proposal
method could overcome the stagnation observed in standard methods, and even improve the performance
in terms of computational time and memory requirements.
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1 INTRODUCTION

This article deals with the numerical resolution of a Helmholtz scattering problem by using an
adaptive version of the restarted GMRES. The resolution of the Helmholtz scattering equation us-
ing iterative methods is particularly difficult since the problem is ill-posed for a set of frequencies
that physically corresponds to the resonance modes of the domain to be solved, the discretiza-
tion grid has to be refined as a function of the frequency of the operator, and the oscillatory and
non-local structure of the solution affects the numerical methods [10]. As a consequence, fast
methods (like multigrid) and preconditioners (like incomplete LU) fail to give fast convergence
for discretizations of the Helmholtz equation; in fact, the improvement of numerical methods and
preconditioners for this kind of problems are an active area of research [7, 10, 11].
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1 92 ADAPTIVE GMRES(M) FOR THE ELECTROMAGNETIC SCATTERING PROBLEM

The design of a preconditioner is not a trivial task, since it involves the knowledge of the problem,
with the possibility of being extremely expensive. In the context of this work, the discretization
of the Helmholtz equation yields a linear system of equations that is hard to solve. This occurs
because linear systems can be highly indefinite, leading to difficulties when attempting to ex-
tract effective preconditioners [5]. For instance, the standard incomplete LU is ineffective, and
in some cases, it does not assure a better rate of convergence [19] and when it is used with GM-
RES, the performance deteriorates as the wavenumber becomes larger [10]. For improvement, a
static alternative consists in modifying the diagonal of the matrix A by adding purely imaginary
values [19], while a dynamic alternative consists in using a flexible method allowing to change
the preconditioner at each step [8,21]. Unfortunately, the aforementioned strategies require the
selection of some parameters, which may be hard to tune. Moreover, when solving the Helmholtz
equation, it is generally expected that an iterative method with good convergence properties will
benefit from a good preconditioner. But a preconditioner can mask the convergence problems of a
certain iterative method. Thus to have good matching towards convergence between the iterative
method and the preconditioner, the improvement of the iterative method is an important issue in
the resolution of the Helmholtz equation.

Generalized Minimal Residual Method (GMRES) is an iterative method frequently selected for
its robustness in problems whose discretization results in a large sparse non-Hermitian linear
system [20]. This method approximates the solution of the linear system Au = f at each iteration,
where A € C"*" is nonsingular and u, f € C". GMRES is a method based on Krylov subspace
which obtains at each iteration an approximate solution by minimizing 2-norm of the residual,
building an orthogonal basis for the Krylov subspace. To maintain the computational and memory
requirement of the orthogonalization process under control, the GMRES is restarted, i.e., the
dimension of the Krylov subspace is allowed to grow to a certain maximum m and then, using the
obtained approximation of the solution, a new residual is computed and a new Krylov subspace
is built. This procedure allows to maintain the dimension of the Krylov subspace at m at the
most, and consequently keep the cost under control for the orthogonalization at each cycle of the
GMRES((m).

Unfortunately, the convergence to the solution is not guaranteed if the selection of the fixed pa-
rameter m is not appropriate, causing slowdown or, even more serious, stagnation in its rate of
convergence [21]. If the rate of convergence presents stagnation, a simple alternative consists of
enlarging the maximum allowed dimension m, enlarging the subspace information. However, this
strategy does not always ensure faster convergence [9,21]. It is necessary to include another kind
of information or modify the search subspace. Several adaptive strategies to modify the restart
parameter are encountered in the literature (see for instance [15]). In [12], the use of a stagnation
test was proposed; [25] was based on the difference of the Ritz and harmonic Ritz values; [1] pre-
sented a simple strategy based on the angles between consecutive residual vectors for modifying
the restart parameter; and [6] introduced a proportional-derivative control-inspired strategy for
choosing the parameter m adaptively. Other modification strategies are hybrid iterative methods
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and acceleration techniques [2]. Our work is framed into the category of augmented methods that
is a class of acceleration techniques. Some augmented methods are presented in [2, 16,17,23].

In this work, we concentrate our efforts on the improvement of the convergence of the GMRES
method itself. To this end, an adaptive control strategy is proposed which includes information
from previous cycles for overcoming the stagnation. The proposed strategy is used for the resolu-
tion of a linear system of equations obtained from the discretization of an electromagnetic cavity
problem [14]. For this problem, the standard GMRES() (and modified implementations using
fixed parameters [2, 16]) have a poor rate of convergence for large wave numbers [7]. Numerical
results for the electromagnetic cavity problem with large wave numbers illustrate the efficiency
of the proposed method.

This paper is organized as follows. In §2, the formulation of GMRES(m) is introduced and the
Electromagnetic Scattering Problem is characterized. In §3, the strategies for overcoming the
stagnation are described. The numerical results (presented in §4 with conclusion in §5), show
that the adaptive strategy improves the convergence of GMRES (m).

Throughout this paper, C"*™ is the set of all n x m complex matrices. I, is the n x n identity
matrix, and e; is its j-th column. Given a matrix M, M T denotes its transpose and M* its conjugate
transpose or Hermitian transpose. Notation || - || denotes the 2-norm for vectors and the induced
norm for matrices. The inner product is denoted as (-, -).

2 GMRES(M) AND ITS MODIFICATIONS

GMRES(m) approximates the solution to the linear system at the j-th restart cycle using the
previous residual, rj_; = f — Auj_y, for constructing a Krylov subspace of J&,(A,rj_1) =
span{r;_1,Arj_g,... ,Am_lrj,l} of dimension m. The j-th approximation is built as

ujzuj,1+%n(A7Vj,1), 2.1

where the index m denotes that the restarting parameter was set to the value m. GMRES(m)
obtains an approximate solution which minimizes the 2-norm of the residual r}, i.e.,
min f—Au;l| . 2.2)
uj€uj_y+Hm(Arjiy) | ! |
To solve this problem, the Arnoldi process is normally used for obtaining an orthonormal basis
for the Krylov subspace. At the j-th cycle, the first m steps of this procedure can be expressed as:

AVm = Verlea (23)

where V,, € C™"™ and V1 := [Viyvmt1] € Cm(m+1) have orthonormal columns and H,, €
CUm+1)>m is the upper Hessenberg matrix formed by an upper matrix H,, of dimension m x m and
an entry f,41,, placed at position (m+ 1,m). If the Arnoldi process starts with v; = (é)rj_l,
where 8 =|| rj_ ||, then by construction the columns of V,, are an orthogonal basis of the
subspace (A, rj_1).
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The approximate solution u; is obtained by u; = u;_1 + V,y; [20] and the expression (2.2)
becomes,
n;m || rj—1 —Amej H . (24)
J

Therefore, the approximate solution u; minimizes the residual norm. GMRES(m) does not main-
tain orthogonality between approximation spaces generated at successive restarts [2,20]. As a
result, GMRES(/m) exhibits a slower rate of convergence than its counterpart the GMRES. The
problem arises when the residual norm between consecutive cycles does not have an adequate
decrease, i.e., when an abrupt slowering occurs in its rate of convergence. A more extreme situ-
ation appears when the rate of convergence exhibits a stagnation, i.e. when the reduction in the
residual norms at consecutive cycles is very small, i.e.,

rj||=| j=1 ||. Therefore, the residual
vectors point in nearly the same direction at the end of every restart cycle, i.e., Z(rj,rj—1) =0,
meaning that the GMRES(m) did not introduce a large decrease in the residual norm between
consecutive cycles [2, 6].

There are several strategies for modifying GMRES(m) to accelerate and avoid stagnation. In this
paper, we focus on the so-called augmented methods. The general idea consists in determining
a subspace of dimension s, as the direct sum of two spaces of smaller dimension, denoted as
span{Vy,..., Vi, @,..., @} where the first m vectors are determined using the standard Arnoldi
procedure with the current residual normalized, i.e., rj—1/||rj—1

; while the remaining vectors,
which consist of the augmented part, contain relevant information saved from outer cycles. Two
alternative methods are explored. The first one is the GMRES-E(m,d), proposed in [16]. This
method computes {@y,...,®,;} as harmonic Ritz vectors associated with the smallest harmonic
Ritz value. This strategy seems to be particularly effective when a priori information on the
problem confirms the presence of a group of relative small eigenvalues, which occurs in Elec-
tromagnetic Scattering Problem [7]. The second method is the LGMRES(m,[) proposed in [2].
In this case, at each restart cycle an approximate solution is constructed by using the first m
vectors Vi, ..., V,, and an additional basis @y, ..., @, in which each of the vectors contains error
information of the each previously built / subspaces. Next, the above methods are described .

GMRES-E(m,d): Including approximate eigenvectors. The goal consists in the elimination
of the components that supposedly slow down convergence [16]. The strategy consists of en-
riching the subspace by introducing eigenvectors associated to the problematic eigenvalues. In
practice, the approximate eigenvectors are the harmonic Ritz vectors associated to the harmonic
Ritz values per cycle [3, 16, 18].

At the j-th cycle, the harmonic Ritz value ik with the associated harmonic Ritz vector ¥ = W, gy,
where g, € C°, with respect to the subspace A% (A, rj_1) satisfies the following expression

(A% — 1) L AK (A, rp), (2.5)

which implies,
(AW (AW, g1 — MWsgr) = 0,

WHAH AW, g = L WHAR W,g,. (2.6)
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Using the Arnoldi relation,
AW = VS+II:IS 2.7

where W; is a n X s matrix, its first m columns are Arnoldi’s vectors and the last d corresponds to
the approximate eigenvectors ¥ and Vi is the n X (s+ 1) orthonormal matrix whose first m+ 1
columns are the Arnoldi vectors and last d columns result from orthogonalizing the d approxi-
mation eigenvectors (%, k = 1,...,d) against the previous columns of Arnoldi’s vectors. Hj is
an (s+ 1) X s upper Hessenberg matrix with its elements constructed by the new orthogonaliza-
tion process. At the j-th cycle, the reduced generalized eigenvalue problem is defined using the
expression (2.6) and the new Arnoldi relation (2.7).

H; H,g = AeH; g1 (2.8)

where H; is the hermitian of the upper Hessenberg matrix whose dimension is s x (s + 1) and
H; is the hermitian of the Hessenberg matrix whose dimension is s x s. Usually the value of s
is much less than n. These eigenvalues are called harmonic Ritz values and are the roots of the
GMRES residual polynomial [21]. The eigenvectors associated with these harmonic Ritz values
are called harmonic Ritz vectors. Some g; associated with the smallest Zk are needed to deflates
the smallest eigenvalues and thus improves the convergence [16, 17]. Since the harmonic Ritz
vectors are useful only at an specific cycle, it needs to be recomputed at each cycle. For this
reason, only the residuals are stored for being reused in the next cycle [16].

At the end of the j-th restart cycle, GMRES-E(m,d) seeks the approximate solution u; of the
form
uj=uj_1+Wsyj, (2.9)

such that y; is obtained by solving the following minimization problem
I7jll = Ilf = Aujl| = min_{[|Ber — Hyyl]. (2.10)
yje(cﬁrl

where B = ||rj_1||. The sequence of the residual norm of the GMRES-E(m,d) has the property
of being non-increasing but can not guarantee convergence [16, 18].

LGMRES(m,): Including the error approximations in the search subspace. The motivation
of LGMRES(m,[) is based on preventing an alternating behavior observed in the GMRES ()
residual at consecutive cycles which results in deteriorating the convergence [2]. LGMRES(m, 1)
includes approximations to the error in the current search subspace. The error approximation at
the j-th restart cycle is defined by using the approximate solution at previous cycles as

Qi1 =uj_1 —uj (2.11)

and ¢@; = 0 for j < 1. This error approximation vector is used for augmenting the search subspace
JHm(A,rj—1) at the next cycle. Note that @0/ € Hn(A,r i—2). Therefore, this error approximation
@, in some sense represents the space .%,,(A,r;_) generated in the previous cycle and subse-
quently discarded in the restarting procedure. Hence it is a natural choice for enriching the next
approximation space ¢, (A,rj_1).

Tend. Mat. Apl. Comput., 21, N. 1 (2020)
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The augmented approximation space . = J&,(A,rj—1) Uspan{¢}, k={(j—1),...,(j— 1)}
has dimension s = m +[. This method, instead of using .%;,(A,r;_1) in equation (2.1), uses the
subspace .. The matrix V| is the n x (s+ 1) orthonormal matrix whose first m+ 1 columns are
the Arnoldi vectors and the last / columns result from orthogonalizing the / error approximation
vectors (@, k = (j—1),...,(j — 1)) against the previous columns of Arnoldi vectors. W; is an
n X s matrix whose first m columns are the orthogonalized Arnoldi vectors and the last / columns
are the / most recent error approximations (typically normalized so that all columns are of unit
length). Then the new relationship at the j-th cycle is

AW, = Vi1 H, (2.12)

holds for LGMRES(m, 1), Hy denotes an (s + 1) x s upper Hessenberg matrix. In practice,
I << m, following [2] [ < 3 is a good choice for for LGMRES(m,!). Similar to expres-
sions (2.9) and (2.10), the approximate solution at the j-th cycle is u; = u; | + Wy; with
Ws=[vi v2...vm @j_;...@;_1] and y; minimize the residual norm ||r;||.

Remark. It is important to remark that LGMRES is not helpful when one of the following
situations occurs:

(a) when GMRES(m) skip angles (£(rj,r;—»)) are not small;
(b) when GMRES (/) sequential angles (£(r s /-_1)) vary greatly from cycle to cycle;
(c) when GMRES(m) converges in a small number of iterations; or

(d) when GMRES(m) skip angles and sequential angles are near zero (indicating stagnation).

LGMRES is not typically a substitute for preconditioning and does not help when a problem
stagnates for a given restart parameter. Possible improvements to the algorithm include a robust
adaptive variant [2].

A-LGMRES-E(m,d,[): Including approximate eigenvectors and errors approximations si-
multaneously with adaptive restart parameter. The proposed method, an adaptive version of
GMRES(m) denoted as A-LGMRES-E(m,d, 1), is inspired by the augmented method presented
in [18] that combine the GMRES-E(m,d) and LGMRES (m, /) with fixed parameters. In problems
with stagnation, according to remark (d) of LGMRES, the error approximation vectors do not
help to improve the rate of convergence, i.e., ¢;—1 = u;—1 —u;—» ~ 0. Hence, these errors vector
are discarded and only the harmonic Ritz vectors are maintained to enrich the search subspace.
As can be seen in the numerical results of the LGMRES-E, keeping constant m and enriching
the search subspace, it does not necessarily avoid stagnation. To solve this problem a controller
to augment the size of the search subspace is proposed for enlarging the Arnoldi basis, since
decreasing the restart parameter does not contribute to an improvement in the convergence [4].
This is done by adding a positive integer value « to the value m. Thus the search subspace is
formed by the m;_| + a Arnoldi vectors and d harmonic Ritz vectors, where m;_; is the restart
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parameter of the previous cycle. The dimension of the search subspace at the j-th cycle is defined
by the following rule:

mi_y+1+d if |yj-1]>8
sj= (2.13)
mi1+o+d if |yl <9,

where 0 is the stagnation threshold parameter. A slow convergence is considered to occur when
lyj—1]l < 8. The o and & values are constant and are selected according to before works and
numerical experiments (see Section 4). According to the previous rule, the matrix W; in the j-th
cycle is formed in the following way,

[Vl eV Oy . Yy Qj g .. (Pj—l} if Hyj_1|| >0
W = (2.14)

[V] e Ve Vil -+ Vit V1 ... ﬁd] if ||yj,1|| < 6.

Finally, the approximate solution at the j-th cycle is,
uj=uj-1+Weyj, (2.15)

where y; is the vector that minimizes the residual norm || ; || and W; is a n x s; matrix containing
the Krylov subspace enriched with information from previous cycles. Baker [2] and Morgan [16]
suggest between 1 and 3 as the number of error approximations / and the harmonic Ritz vectors d,
respectively; since the increase of these values does not significantly improve the decrease in the
number of cycles necessary for convergence. In this work, the values / = 1 and d = 3 are chosen
considering the above suggestions and giving more importance to the harmonic Ritz vectors,
since the error approximations allow to accelerate the convergence but do not avoid stagnation.
When the matrix is non-Hermitian and non-normal, as in the case of the problem addressed in
this work, it is observed that the best selection of the aforementioned parameters is difficult to
obtain since an a priori behavior of the iterative method with respect to the parameters is not
completely understood.

The pseudocode for the j-th cycle of the proposed method denoted as A-LGMRES-E(m,d, ) is
presented in the Algorithm 1.

3 AN ELECTROMAGNETIC CAVITY PROBLEM

The electromagnetic problem observed at Figure 1 is focused on a 2-D geometry by assuming that
the medium is invariant in the z-direction and nonmagnetic with constant magnetic permeability
1 (x,y) = Ho. The ground plane (x-axis) and the wall of the cavity are perfect electric conductors,
and the interior of the cavity is filled with inhomogeneous material characterized with its relative
permittivity & (x,y) [7].

For a transverse magnetic (TM) polarization, in which the magnetic field is transverse to the
invariant direction and the electric field is E = (0,0,u(x,y)), the modeling of the cavity problem

Tend. Mat. Apl. Comput., 21, N. 1 (2020)
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Algorithm 1 The j-th cycle of A-LGMRES-E(m,,d)

Require: GivenA, uj_y, rj_i,mj_i, |lyj—1/l. {(p}jj, {04, 8,1,d, o, M.
1: if Hyj_l || > & then
2. sj=mj+l+d

3:  Generate Arnoldi basis and matrix H using ® ... 9, and Qig - Qi1
4: else

5: if m; < myq, then

6: s]':mj,l—i-oc—l-d,

7: Generate Arnoldi basis and matrix Hy using ® ... oy

8 else

9: $j = Mpax +d,
10: Generate Arnoldi basis and matrix Hy using ® ... oy
11:  endif
12: end if

13: Find y; = argminyccs || Bey — Hyy ||, compute uj and r;
14: if || rj ||< tolerance then

15: stop;

16: else

17: j=j+1

18:  Compute the error approximations vectors, @;_;,...,Q;_1,
19:  Compute the harmonic Ritz vectors, 9y, ..., 3y,

20: end if

—Q1

Figure 1: The scattering geometry. £ = 1 en Q\Q and & =2 in Q; [7,24].

yields the Helmholtz equation (3.1) together with a Sommerfeld’s radiation condition imposed
at infinity (equation (3.3)):

Au+I3eu = f,in Q = [0,a] x [b,0], (3.1
u=0,0nS, (3.2)
Opu=J (u)+g,onT (3.3)

where ky is the free space wave number, Q = [0,a] x [—b,0] € R? is the problem domain, f is the
source term and f = 0 in the free space, S denotes the walls of cavity, .7 is a non-local boundary
operator, I is the aperture between the cavity and the free space and g(x) = —2ife'**.

Tend. Mat. Apl. Comput., 21, N. 1 (2020)
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The discretization by finite differences of equation (3.1) gives:

W1 —2uij+uip W1 —2u;j+ Ui ji

2 2 + kg (xi,y )i j = f(xi,¥;7) 3.4
X y

fori=1,2,...M, j=1,2,...,N. The expression (3.2) is discretized by
U, j = UM+1,j = Uio = O,i: 1,2,...,M,j = 1,...,N. (35)
The discrete form of the non-local boundary condition (3.3) is given by

M
Ui N1 — U

% = Zgil”l,N+l +gx),i=1,...,M. (3.6)
y =1

For more details about the system of equations, see [7].

The discretization of Helmholtz problem (3.1)-(3.3) by finite differences yields a linear system
of equations Au = f, in which the coefficient matrix A is non Hermitian and highly indefinite
for large values of the wave number k¢ [11]. In addition, the obtained linear system of equations
is ill-conditioned and the growth of the mesh size (M and N) leads to very large matrices, and
hence to high computational costs. Usually, direct methods do not perform well, and a general
iterative method is required. GMRES is normally used in this context (non-Hermitian and indef-
inite matrices [20]) but due to the high computational and memory requirements the GMRES ()
is normally used. Unfortunately, as mentioned at the introduction section, §1, the possible prob-
lems of convergence of the GMRES(m) are exacerbated by the particularities of the Helmholtz
problem described above. This is the reason way the A-LGMRES-E(m,d,[) is designed and
numerically analyzed for the resolution of this problem.

The mesh size is determined by accuracy requirements on the discretization. The quantities,

A 2m 2=m

TR TN+, (3.7)
A 2 2m

A =2 M1 )

are the numbers of mesh points per wavelength in both directions. A commonly employed
engineering rule [8] states that, for a second order finite difference,

A

—<10 or, kohy < /5, 3.9)
X

A

—<10 or, kohy < /5, (3.10)
'y

is required to obtain satisfactory results. This rule is used in this work, hence the number of
points per wavelength is maintained as a constant, which means that the grid is refined as the
wave number is increasing, i.e., when the wave number is increased, the values of M and N is
also increased.

Tend. Mat. Apl. Comput., 21, N. 1 (2020)
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4 NUMERICAL EXPERIMENTS

The numerical experiments consider Q = [0,1] x [—0.25,0] filled with the non-homogeneous
medium:

2 in Q; = (0.2,0.8) x (—0.25,—0.20),
&= 4.1)
1 in Q\Q,.

The experiments were run on a computer with Intel Core i7-6700T with 8GB RAM, using the
software MATLAB R2016a for Windows 10. The resulting linear system Au = f was solved
with the following iterative methods: GMRES(m) [20]; GMRES-E(m, d) [16] using d harmonic
Ritz vectors for augmenting the search subspace, whose dimension at each cycle is s = m +d;
LGMRES(m,1) [2] using [ errors approximation vectors for augmenting the search subspace,
whose dimension at each cycle is s = m +[; LGMRES-E(m,[) [18] using [ errors approximation
vectors and d harmonic Ritz vectors for augmenting the search subspace, whose dimension at
each cycle is s = m + 1 +d. For enriching the subspace in the proposed A-LGMRES-E(m;,1,d)
method, if ||y;|| > & it is used an adaptive restart parameter m; = m;_;, d harmonic Ritz vectors
and [ error approximation vectors; while if ||y;|| < & it is used a restart parameter m; = m;_; +
and d harmonic Ritz vectors only. In the latter case, the dimension at each cycle is according to
rule (2.13).

It has also implemented a modified version of standard GMRES (m), that uses the rule (2.13) to
modify adaptively the restart parameter and without any enrichment for the search subspace, i.e.,
I = d = 0. This method is denoted as GMRES(m;) and it is used for comparison purposes. The
strategies that modify the restart parameter include a minimum #1,,;,;, and a maximum 1, for it,
i.e., Myin < mj < Myqy. The initial restart parameter is denoted as mg and is chosen mg = My,
for these strategies.

In Table 1 is presented the considered wave numbers ky and size of the grid for the matrices
tested of the problem introduced in §3. In this table, the size, the number of nonzero matrix
elements and the condition number of the matrix A are defined as size(A), nnz(A4) and cond(A)
respectively; M, N are discretization parameters. The minimum and the maximum eigenvalue
(in magnitude) are represented by A; and A, respectively. The initial solution is xo = 0 for all
numerical experiments in this section, the stopping criterion on the relative residual norm is
|7 |l /|| 7o ||< 107 or a maximum amount of 3000 restart cycles. The parameters considered
for each method are summarized in Table 2. The harmonic Ritz vectors are obtained using the eigs
MATLAB function with an initial vector of ones instead of using a random vector as it does by
default. This allows to keep the same number of restarts cycles when a problem is running several
times. The following parameters are those defined by default in the eigs function. Some of these
principal parameters are tolerance of 10~° and a maximum number of 300 iterations [22]. For
the cases where the method does not reach convergence before 3000 restart cycles, the method is
stopped and the time is denoted as NC.
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Table 1: List of test problems in the cavity problem with different wave numbers and grids.

A M N ky size(A) nnz(A) cond(A) M Ay
cavityOl 39 9 27 390 3258 1.197E+03  23.16 12595.62
cavity02 59 14 2=&m 885 7583 1.238E+03  67.02  28593.93
cavity03 99 24 4x; 2475 21633  12.469E+03 14.10  79792.69
cavity04 99 24 4rx 2475 21633 4531E+03  27.02 79668.00
cavity05 199 49 4x 9950 88258 43.281E+03 14.21  319668.00
cavity06 299 74 4m 22425 199883  1.120E+05 10.11  719668.01
cavity07 199 49 8n 9950 88258  1.498E+05 3.53  319179.12
cavity08 299 74 8rx 22425 199883  1.323E+05 8.88 719179.76
cavity09 399 99 8z 39900 356508 1.761E+05 12.03 1279180.09
cavityl0 199 49 10w 9950 88258  14.795E+03 58.84 318816.55
cavityll 299 74 10w 22425 199883 33.825E+03 50.84 718817.42
cavityl2 399 99 10w 39900 356508 66.058E+03 42.17 1278817.86

Table 2: Parameters considered for each method.

Methods Parameters

GMRES(m) m=30.

LGMRES(m, 1) m=217, [=3.

GMRES-E(m,d) m=27, d=3.

LGMRES-E(m,[,d) m=26, I=1,d = 3.

GMRES (m;) Mypin=30, My =100, 6=0.5, =4

A-LGMRES-E(mj,l,d)  myip=26, muq=100, I=1,d = 3, §=0.5, a=4.

Experimentally, it is observed that the values ||y, || are between 1E-01 and 1E-07 for the numerical
tests of the GMRES(m) (see Table 3). Note that only four problems converged to the prescribed
tolerance, which shows that the problem of the cavity is difficult for the GMRES(m) with m fixed
and without subspace enrichment. The problems where the GMRES () exhibits stagnation (from
cavity05 to cavity12) have in general a mean(||y;||) lower than the problems where it converges
faster (cavity0l and cavity02). This gives an idea of how susceptible is the method to suffer
stagnation in case of the value of m remains constant. In this work, the stagnation threshold
parameter is considered to be 6 = 0.5 and it is of the order of max(||y;||) for problems without
stagnation (see Table 3). The value of § is chosen heuristically. Smaller values of 8 could modify
the values of m unnecessarily (recall that the modification of the value of m is given by the rule
(2.13) and it is directly affected by the value of §). With reference to the value of ¢, which is
the increment of the restart parameter m when there is stagnation, previous works have used very
small increments such as A, =2 [13] and A, = 3 [6] when a stagnation is detected. In this work,
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Table 3: Results for GMRES(m) for each problem in Table 1.

Problems min(|ly;||) mean(|ly;|]) max(|ly;|]]) Cycles
cavity0l ~ 1.45E-06 4.76E-03 1.94E-01 106
cavity02  1.70E-06 4.98E-03 2.37E-01 77
cavity03 ~ 8.07E-07  2.95E-04  5.01E-02 2073
cavity04  1.99E-07 3.95E-04 5.67E-02 1280
cavity05  1.73E-04 5.65E-04 4.37E-02 NC
cavity06 ~ 1.82E-05  9.52E-05 1.97E-02 NC
cavity07  540E-04  1.78E-03  9.47E-02 NC
cavity08  2.31E-04 7.25E-04 2.95E-02 NC
cavity09  6.05E-05  3.19E-04 1.52E-02 NC
cavityl0  1.60E-04  1.90E-03 1.13E-01 NC
cavityll  5.49E-04 1.75E-03 4.69E-02 NC
cavityl2  3.32E-04 1.13E-03 2.64E-02 NC

rule, we consider o = 4.

we considered the same order of increase, but with a value of 4, i.e., according to our incremental

Table 4: Results for A-LGMRES-E(m;,3,1) for each problem in Table 1.

Problems min(||ly;||) mean(|ly;|) max(|ly;|) Cycles
cavity0l  6.23E-04 1.00E+00 6.51E+00 27
cavity02  3.35E-04 8.62E-01 9.15E+00 31
cavity03  7.79E-05 1.80E-01 5.15E+00 156
cavity04  2.97E-05 3.48E-01 4.65E+00 161
cavity05  4.17E-05 1.54E-01 1.47E+01 587
cavity06  2.54E-05 4.99E-02 2.27E+01 1879
cavity07  3.18E-04 1.27E-01 2.00E+01 2559
cavity08  2.15E-03 1.42E-01 2.55E+01 NC
cavity09  6.34E-03 1.44E-01 5.02E-04 NC
cavityl0  1.16E-04 6.11E-01 3.71E+01 753
cavityll 8.92E-06 2.27E-01 2.76E+01 2076
cavityl2  9.27E-03 2.64E-01 3.31E+01 NC

Table 3 presents the behavior of the norm of the vector y;, when GMRES(m) method is used for
all the tested problems. It is observed that the norm of the vector y; (see equation (2.15)) is small
(less than 10_2) indicating a slowdown rate of convergence; i.e.,

rjl| = ||rj—1||- Table 4 shows re-
sults on problems from Table 1 for the proposed method A-LGMRES-E. It is listed the numbers
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Figure 2: Comparative numerical results for adaptive methods. Relative residual norm
(ll7jll/llro])); search subspace dimension (m; for GMRES(m ;) and s; for A-LGMRES-E(s;)) and
controlled variable ||y;|| for (a) cavity03 and (b) cavity04.

of cycles required for converging to ||r;||/||ro|| < 107, as well as, min(|ly,|), mean(]|y;|| and
max(||y;||) which are the minimal, mean and maximal values of ||y;||, respectively. A-LGMRES-
E converged to the prescribed tolerance in all cases, with exception of three problems: the cav-
ity08, cavity09 and cavityl2. For these problems, the proposed method achieves the lowest
relative norm with respect to the other iterative methods tested (see Table 6).

Figures 2-(a) and 2-(b) show the convergence curves and the value ||y;|| versus the number of
restart cycles for the problems cavity03 and cavity04. It is observed that the A-LGMRES-E
method, which includes information from previous cycles and updates the restart parameter ac-
cording to rule (2.13), presents a similar rate of convergence to the GMRES(m;) method, which
updates only the restart parameter without including information from previous cycles. Also,
in Figure 2, the search subspace dimension of the adaptive methods is compared in the second
sub-figure of columns (a) and (b), that is, the value m; for GMRES(m;) and the value s; for
A-LGMRES-E(s;). The value s; has lower growth than m;, and this allows a smaller number
of matrix-vector multiplications for the A-LGMRES-E(s;) in the first fifty cycles. In the third
sub-figure, the controlled variable ||y;|| are presented for the two methods. The values ||y;|| of
A-LGMRES-E(s;) are relatively larger than the corresponding values provided by GMRES(m ;)
but lower than the threshold & in some cases, allowing the increase of the value s; more slowly
than the m; of GMRES(m;).

Comparing the augmented methods with information of previous cycles (see Figure 3), i.e.
the LGMRES(m, 1), GMRES-E(m,d), LGMRES-E(m, [,d) and A-LGMRES-E(m,,[,d); the A-
LGMRES-E has better rate of convergence for the showed problems, having lowest execution
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Figure 3: Convergence curves for the augmented methods A-LGMRES-E, LGMRES-E, LGM-
RES and GMRES-E: relative residual norm vs. number of restart cycles, for (a) cavity03, (b)
cavity04, (c) cavity06 and (d) cavityl0. Parameters for the adaptive strategy A-LGMRES-E:
0 =0.5, a = 4. NC means that the method does not reach convergence before 3000 cycles.

times and number of restart cycles. Furthermore, the LGMRES(m,/) does not converge for the
problems cavity06 and cavityll (Figures 3-(c) and 3-(d)). This is also true for the LGMRES-
E(m,1,d), which combines error approximations and harmonic Ritz vectors [18], when constant
values of m, [ and d are used. This shows that the addition of information vectors from previous
cycles with fixed restart parameter is not enough to get the convergence, so an adjustment of m
is needed to improve the rate of convergence.

All implemented methods are compared in Table 5. It is observed that the method A-LGMRES-
E(m;,1,d) has lowest values for the number of cycles necessary for converging and produces
steepest decrease in the rate of convergence with respect to the methods that use fixed parameter.
For problems that do not converge, the proposed method achieves the best reduction of the rela-
tive residual norm ||r;{|/||ro|| with respect to the other methods tested. The best reduction of the
relative residual norm for difficult problems are indicated by boldface in Table 6. It is observed
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Table 5: Metrics for selected matrices and iterative methods: time in seconds and number of
cycles required for ||r;]|/||ro|| < 107 (Cycles).

GMRES(m) GMRES(m;) LGMRES GMRES-E LGMRES-E A-LGMRES-E
Problems Time Time Time Time Time Time
(Cycles) (Cycles) (Cycles) (Cycles) (Cycles) (Cycles)
. 0.68 0.69 0.47 091 0.65 1.02
cavityO1l
(106) (19) (68) (74) (43) 27
{02 0.90 1.11 1.14 1.59 1.44 1.44
cavi
g %) @1 (101) (101) (60) 31
. 47.24 30.92 34.38 34.97 15.31 31.84
cavity03
(2073) (141) (1522) (1255) (549) (156)
. 28.28 31.84 18.68 17.70 10.98 28.98
cavity04
(1280) (149) (833) (602) (385) (161)
. NC 390.11 NC NC NC 413.64
cavity05
(3000) (563) (3000) (3000) (2000) (587)
. NC 2865.62 NC NC NC 2309.83
cavity06
(3000) (2662) (3000) (3000) (3000) (1879)
. NC 1900.67 NC NC NC 1821.93
cavity07
(3000) (2662) (3000) (3000) (3000) (2559)
. NC NC NC NC NC NC
cavity08
(3000) (3000) (3000) (3000) (3000) (3000)
. NC NC NC NC NC NC
cavity09
(3000) (3000) (3000) (3000) (3000) (3000)
. NC 706.96 NC 224.16 225.09 421.43
cavity 10
(3000) (1086) (3000) (2626) (2637) (753)
. NC NC NC NC NC 2510.73
cavityll
(3000) (3000) (3000) (3000) (3000) (2076)
. NC NC NC NC NC NC
cavity12
(3000) (3000) (3000) (3000) (3000) (3000)

Table 6: Relative residual norm for problems that do not converge before 3000 cycles for each

method of Table 2.
Problems GMRES(m) GMRES(m;) LGMRES GMRES-E LGMRES-E A-LGMRES-E
e e I o
cavity08 7.45E-04 3.06E-04 6.82E-04 4.86E-04 2.68E-04 3.00E-06
cavity09 3.49E-03 1.40E-03 3.11E-03 3.27E-03 2.72E-03 9.45E-05
cavity12 1.21E-03 4.66E-04 1.23E-03 6.86E-04 6.52E-04 2.68E-05
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that the methods with fixed parameters achieved lower reduction of the relative residual norm in
cycles carried out with respect to the other tested methods.

5 CONCLUSION

An adaptive method based on a threshold criterion was introduced for identifying stagnation in
the GMRES(m). The criterion yields the expansion of the search subspace for both improving the
speed and overcoming the stagnation. The proposed method, as well as several standard methods,
were implemented for the resolution of the finite difference approximation of the Helmholtz
equation. Numerical experiments for different discrete domain sizes and values of wave number
ko were compared, and the results show that the proposal is good enough to improve convergence
when comparing with other iterative methods with either fixed parameters and enriched subspace,
or adaptive parameters without subspace enrichment. The computation is especially challenging
when kg is increased. In this case, a more exhaustive research is necessary for linear systems with
large kg in order to identify what is more convenient; either to modify the restart parameter m or
an appropriate augmentation of the search subspace for GMRES (m).
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RESUMO. Este artigo apresenta uma versdo adaptativa do GMRES com reinicio
(GMRES(m)) para a resolu¢do da aproximagdo por diferencas finitas da equagdo de
Helmholtz. Foi observado que a escolha do pardmetro de reinicializagdo m afeta fortemente
a convergéncia do GMRES(m). Para contornar este problema, o GMRES(m) é formulado
como um problema de controle, que permite combinar adaptativamente duas estratégias:
a) a variagdo apropriada do parametro de reinicializagdo m, se for detectado um estanca-
mento na convergéncia; e b) o aumento do subespaco de busca, usando vetores obtidos em
ciclos anteriores. A proposta é comparada com métodos iterativos semelhantes aos obti-
dos na literatura. Os resultados numéricos sugerem que o método adaptativo de comutagdo
pode contornar o estancamento observado em métodos conhecidos e até mesmo melhorar o
desempenho computacional e os requisitos de memoria.

Palavras-chave: método iterativo, GMRES(m) adaptédvel, espalhamento eletromagnético.
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