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ABSTRACT. The estimation of the correlation between independent data sets using classical estimators,
such as the Pearson coefficient, is well established in the literature. However, such estimators are inade-
quate for analyzing the correlation among dependent data. There are several types of dependence, the most
common being the serial (temporal) and spatial dependence, which are inherent to the data sets from several
fields. Using a bivariate time-series analysis, the relation between two series can be assessed. Further, as one
time series may be related to an other with a time offset (either to the past or to the future), it is essential to
also consider lagged correlations. The cross-correlation function (CCF), which assumes that each series has
a normal distribution and is not autocorrelated, is used frequently. However, even when a time series is nor-
mally distributed, the autocorrelation is still inherent to one or both time series, compromising the estimates
obtained using the CCF and their interpretations. To address this issue, analysis using the wavelet cross-
correlation (WCC) has been proposed. WCC is based on the non-decimated wavelet transform (NDWT),
which is translation invariant and decomposes dependent data into multiple scales, each representing the be-
havior of a different frequency band. To demonstrate the applicability of this method, we analyze simulated
and real time series from different stochastic processes. The results demonstrated that analyses based on
the CCF can be misleading; however, WCC can be used to correctly identify the correlation on each scale.
Furthermore, the confidence interval (CI) for the results of the WCC analysis was estimated to determine
the statistical significance.

Keywords: Multiscale Analysis, Time Series, Cross Correlation, Non-Decimated Wavelet Transform.

1 INTRODUCTION

Investigating the correlation between time series is of great interest in several areas. Further,
lagged relations are common in many natural systems. For example, a series may have a delayed
response relative to another series or one may have a delayed response to a common stimulus that
affects both series. A simple zero-lag correlation coefficient is inadequate for such situations.
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392 WAVELET CROSS-CORRELATION IN BIVARIATE TIME-SERIES ANALYSIS

A common way in which the relation between two time series can be analyzed is to use the cross-
correlation function (CCF), to determine a simple correlation coefficient as a function of the lag
or the time offset between the time series. Although the time lag at which the series are correlated
can be identified using the CCF, there are a few limitations. First, each series must be normally
distributed. Second, if at least one series is autocorrelated, the estimated CCF may be distorted
and, therefore, may be misleading as a measure of the lag between the time series. Finally, the
relations between different scales cannot be taken into account. As time series are frequently
autocorrelated and composed of mixtures various effects of different frequencies, the CCF is
usually inadequate. Thus, in this paper, we point out the advantages of using the WCC estimator,
which can estimate how strongly two time series are correlated in terms of the lag and the scale.
Some successful applications of WCC include fluid engineering [6], including the analysis of the
cross-correlation between two velocity signals to investigate the structural similarity of motion
on various scales in terms of the time and period delays. In another study [11], WCC was used
to analyze the relation between cerebral oxyhemoglobin (O2Hb) and mean arterial blood pres-
sure to identify autonomic failure. The results demonstrated that the frequency of the maximum
wavelet cross-correlation is significantly different between patients with autonomic failure and
age-matched control subjects.

In these applications, a continuous wavelet transform, which is very redundant, was used. On
the contrary, decimated discrete transforms are non redundant, so they are attractive for prac-
tical applications; however, they are not the best option for time series because of the transla-
tion variance. In this article, WCC estimation will be conducted based on the non-decimated
wavelet transform (NDWT), which is also called the maximal overlap discrete wavelet trans-
form. The NDWT is a discrete transform but has the property of shift invariance and offers many
advantages. One benefit is that the estimators obtained from the NDWT are asymptotically more
efficient than those from the commonly used decimated wavelet transform [8].

To investigate the performance of WCC, simulated time series from various stochastic processes
and scenarios as well as real data from bronchiolitis hospitalizations in two health divisions of
the Paraná state in Brazil were considered.

This paper is organized as follows: the CCF and WCC are briefly described in sections 2 and 3,
respectively. In section 4, several data sets were simulated and in section 5, real data is presented.
Final considerations are considered in section 6.

2 CROSS-CORRELATION COEFFICIENT

Considering Xt and Yt , t = 1, . . .n, stochastic processes, and B jXt = Xt− j the backward operator,
the dX th ((1−B)dXt ) and dY th ((1−B)dYt ) order backward differences are stationary Gaussian
processes, and the cross-covariance function (CCVF) of n pairs of observations is

Tend. Mat. Apl. Comput., 19, N. 3 (2018)
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cXY (k) =


1
n

n−k

∑
t=1

(xt − x̄)(yt+k− ȳ), k = 0,1, . . . ,n−1,

1
n

n

∑
t=1−k

(xt − x̄)(yt+k− ȳ), k =−1,−2, . . . ,−(n−1),
(2.1)

where n is the series length, x̄ and ȳ are the sample means, and k is the lag, as seen in [4].
The sample cross-correlation function (CCF) is the CCVF scaled by the variances of the two
series:

CCFXY (k) =
cXY (k)√

cXX (0)cYY (0)
, (2.2)

where cXX (0) and cXY (0) are the sample variances of {Xt} and {Yt}. The CCF calculates the
linear correlation between the series, ranging from -1 to 1.

3 WAVELET CROSS-CORRELATION

The discrete wavelet transform (DWT) consists on the decomposition of signals according to
wavelet functions with discretized translation and dilatation parameters [14]. Unfortunately, the
DWT is variant by translation and inadequate for time series analysis [3][7]. Hence, the NDWT
[9] was chosen, because its benefits, such as translation invariance and easy interpretation of the
coefficients. The NDWT coefficients can be obtained by

W̄j,t =
L j−1

∑
l=0

h j,lXt−l , (3.1)

where h j,l , j = 1, . . . ,J, l = 0, . . . ,L j−1, L j ≡ (2 j−1)(L−1)+1, are the wavelet filters [15].
So, the WCC of {Xt ,Yt} for the scale λ j = 2 j−1, j = 1, . . . ,J, and an arbitrary positive lag τ can
be expressed as seen in [15]

ρτ,XY (λ j)≡
Cov

{
W̄ (X)

j,t ,W̄ (Y )
j,t+τ

}
(

Var{W̄ (X)
j,t }Var{W̄ (Y )

j,t+τ
}
)1/2 =

cτ,XY (λ j)

cXX (λ j)cYY (λ j)
, (3.2)

where

•
{

W̄ (X)
j,t

}
are the NDWT coefficients for {Xt} in the scale λ j;

•
{

W̄ (Y )
j,t

}
are the NDWT coefficients for {Yt} in the scale λ j;

• and −1≤ ρτ ≤ 1, for all τ and j.

Tend. Mat. Apl. Comput., 19, N. 3 (2018)
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For demonstration purposes, if {W̄ (X)
j,t ,W̄ (Y )

j,t } is a bivariate Gaussian process, the NDWT based
estimator ρ̃XY (λ j) of the wavelet correlation for scale λ j is asymptotically normally distributed
with mean ρXY (λ j). As seen in [14], the large sample variance of ρ̃XY is given by

Var(ρ̃XY ) ≈ 1
Ñ j

Ñ j−1

∑
τ=−(Ñ j−1)

{
ρτ,X (λ j)ρτ,Y (λ j)+ρτ,XY (λ j)ρτ,Y X (λ j)

−2ρ0,XY (λ j) [ρτ,X (λ j)ρτ,Y X (λ j)+ρτ,Y (λ j)ρτ,Y X (λ j)]

+ρ
2
0,XY (λ j)

[
1
2

ρ
2
τ,X (λ j)+ρ

2
τ,XY (λ j)+

1
2

ρ
2
τ,Y (λ j)

]}
. (3.3)

where Ñ j is the number of coefficients associated with scale λ j, and ρτ,X (λ j) is the scale λ j

wavelet autocorrelation for the process {Xt}.
Using the large sample theory, an approximate CI for the NDWT estimator of the WCC can be
constructed. In case of non-normal correlation coefficients in small sample sizes, a nonlinear
Fisher’s z transformation h(ρ) is sometimes required to produce a sample correlation coefficient
with an approximately Gaussian distribution and a shape that is independent of the true correla-
tion coefficient.
The Fisher’s transformation is defined by the following expression:

1
2

ln
(

1+ ρ̃X (λ j)

1− ρ̃X (λ j)

)
= arctanh(ρ̃X (λ j)). (3.4)

Then, an approximate 100γ% CI for ρXY (λ j), based on the NDWT, where γ is the nominal
confidence coefficient, istanh

h[ρ̃XY (λ j)]−
Φ−1

γ√
Ñ j−3

 , tanh

h[ρ̃XY (λ j)]+
Φ−1

γ√
Ñ j−3


 , (3.5)

where Φ−1
γ is the 100γ% quantile of the standard normal distribution, Ñ j is the number of

coefficients associated with scale λ j and ρ̃ is the NDWT estimator of the wavelet correlation.

In practice, the NDWT can be easily computed by applying the known pyramidal twice [1]. This
algorithm is frequently used for the decimated case, but it requires a time series of dyadic length
n = 2J , where J represents the largest scale. Each scale j corresponds to a frequency band from
2 j to 2( j+1), whose inversion produces the period of time evaluated in the scale of the WCC.

4 SIMULATED DATA APPLICATION

To investigate the characteristics, advantages, and potential applications of WCC, time series
from different first order autoregressive (AR) and moving average (MA) stochastic processes
were simulated. The AR process with autoregressive parameter α is given by

Xt = αXt−1 + εt , (4.1)

Tend. Mat. Apl. Comput., 19, N. 3 (2018)
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and the moving average process with parameter θ is

Xt = εt +θεt−1, (4.2)

where εt is the error component.

The simulation scenarios are described in Table 1. The options from the simulation scenarios
(Table 1) were combined to simulate 128 monthly time series.

Series A, B, and C were built with different frequency characteristics to identify patterns in dif-
ferent scales. Series D was derived from series C with a lag of 12 observations to investigate
if the correlation can be detected in the presence of a lag. By considering the possible AR and
MA parameters, and the various lengths, each simulated series was decomposed into 11 lev-
els by applying the NDWT. Some of the levels were removed before reconstruction to create
series with known similarities in some scales and no correlation with other scales. Based on
these simulations, the performance of the correlation approach can be evaluated under a range of
conditions.

Table 1: Simulation Scenarios.

Parameter Options
α 0.2; 0.4; 0.6; 0.8
θ 0.2; 0.4; 0.6; 0.8

Length 128; 10,000

Frequency

A: Smoothest behavior; reconstruction without the levels 1, 2, and 3.
B: Smooth and noisy behaviors; reconstruction without the levels 5, 6, and 7,
i.e., without middle-frequencies.
C: Noisy behavior; reconstruction with the levels 1 and 2, i.e, the highest
frequencies.
D: Noisy behavior and lagged of 12 observations; derived from series C with a
lag of 12 observations.

The NDWT decomposition, reconstruction, and WCC analysis were performed in R language
[10] using the Daubechies mother wavelet and all graphics were implemented by using a package
called ggplot2 [16].

The results from the application of the proposed methodology to the simulated data are illustrated
by the time series generated from an autoregressive model with a parameter α of 0.8 and a length
of 10,000. The results obtained using other simulation parameters and lengths were similar but
are not shown here due to space constraints.

In Figure 1 we have the decomposition of the simulated series, of a process AR(1) with parameter
α=0.8 with length 10,000, by the NDWT in 11 levels.

Tend. Mat. Apl. Comput., 19, N. 3 (2018)
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Figure 1: Wavelet coefficients from different levels of decomposition from
a simulated AR(1) with parameter α=0.8 and length 10,000.

Figure 1 shows that is hard to comprehend the series behavior, particularly in the first levels
where the high-frequency components are found, due to the length of the simulated series. Thus,
Figure 2 shows the first 200 observations in the series for better visualization.

The CCF was applied to a set of two simulated series: AR(1) with α = 0.8 and one of series A, B,
or C, with no lag between them. The correlation coefficients and corresponding 95% CIs of the
correlations with filtered series A, B, and C were, 0.871 (0.833; 0.900), 0.797 (0.740; 0.842), and
0.367 (0.240; 0.481), respectively. These results show that the correlations between AR(1) and
series B or C are similar despite the different behaviors of these series. This was expected because
the CCF is considered to be a general measure of correlation. A weaker correlation between
AR(1) and series C was found despite the perfect correlation between the highest frequencies in
these series.

Figure 3 shows that there is no correlation in the removed scales of each case. This was expected
because the filtered series are reconstructions of the original series without those levels. In ad-
dition, as expected, the highest correlations occurred when there was no lag. Figure 4 shows the
WCC estimates and their respective 95% CIs for the first 10 scales with no lag.

Tend. Mat. Apl. Comput., 19, N. 3 (2018)
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Figure 2: The first 200 observations of the AR(1) with parameter α=0.8, A,
B, and C series of length 10,000.
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Figure 3: Estimated WCC with the frequency bands related to the first 10
scales, lags ranging from -10 to 10, for AR(1) with α = 0.8 and the A, B,
and C filtered series.

The results in Figure 4 show that the correlation between the simulated series can be estimated
in the appropriate scales, and no correlation is identified in the removed scales of each data set.

In order to evaluate the correlation detection performance in the presence of various lags, Figure
5 illustrates the AR(1) simulated process along with the first 188 observations from series D with
a lag of 12 observations.

Tend. Mat. Apl. Comput., 19, N. 3 (2018)
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Figure 4: Estimated WCC for each scale on lag 0, considering the AR(1)
with α = 0.8 simulated series and the A, B, and C filtered series.
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Figure 5: First 188 observations of AR(1) with parameter α = 0.8 and D
series.

The output of the CCF with AR(1) and series D was -0.010 (-0.030; 0.009) with a zero lag,
indicating no correlation, and 0.429 (0.409; 0.449) when a lag of 12 observations was introduced
representing a moderate correlation.
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To visualize the WCC performance in the presence of different lags and scales, Figure 6 shows a
heatmap representing the correlation under various conditions.
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Figure 6: Estimated WCC for each scale and lag, considering the AR(1)
with α = 0.8 simulated series and the filtered series D.

The data shows that there is no correlation at the largest scales because these scales were re-
moved. However, in the other scales, a strong correlation with a lag of 12 was also detected,
which is accurate considering the shift of 12 months in series D. In addition, Figure 7 was created
for a lag of 12 to better visualize the behavior and the CI for each scale.
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Figure 7: Estimated WCC for each scale and lag 12, considering the AR(1)
with α simulated series and the filtered series D.

These findings reinforce the importance of using WCC when investigating the intercorrelation
and resemblance between two time series or signals. In addition to providing more accurate point
estimates with more precise CIs, the WCC estimator can provide estimates on multiple scales,
allowing for the correlation between behaviors or components of two signals to be identified.

A heatmap is used to illustrate the point WCC estimates for different lags and scales for better
visualization.

Tend. Mat. Apl. Comput., 19, N. 3 (2018)
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5 REAL DATA APPLICATION

To test the proposed approach on real data, a time series was constructed from the number of
bronchiolitis cases in the Metropolitana and Maringá health divisions of Paraná state, Brazil. The
number of bronchiolitis cases was taken as the number of patients hospitalized for bronchiolitis
each month as reported in the DATASUS (Brazilian Unified Health System database) in the
period from January 2002 to December 2012 (Figure 8).
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Figure 8: Time series of the number of bronchiolitis cases in the Metropoli-
tana and Maringá health divisions of Paraná state from January 2002 to
December 2012.

The results shown in Figure 8 for the Metropolitana Health Division include regular peaks, which
indicate seasonality. Conversely, the time series data for the Maringá Health Division do not have
consistent patterns and the correlation between the two divisions is not obvious. In Figure 9, the
estimated WCC is presented to evaluate the correlation behavior on different scales and lags.

The results in Figure 9 demonstrate that as the lag approaches zero, strong correlations on the
scale of 8-16 were observed, which includes the effects (periodicity) of 12 months. This means
that both series have annual seasonality and, hence, are correlated. Other correlations were iden-
tified on the scale of 32-64. Further, with a lag of approximately 4, which may occur due to some
another cyclical effect with periodicity larger than 3 years, the estimated WCC cannot be visually
identified in Figure 8.

6 FINAL CONSIDERATIONS

In this study, the capability for investigating the correlation of time series on multiple scales was
presented and evaluated. Different stochastic processes were analyzed and the use of the WCC

Tend. Mat. Apl. Comput., 19, N. 3 (2018)
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Figure 9: Estimated WCC for each scale and lag, considering the number
of bronchiolitis cases in the Metropolitan and Maringá health divisions of
Paraná state.

estimator demonstrated far better and more realistic results compared with the results obtained
using the classical CCF estimator. Each simulated process was correlated with others having
different frequency characteristics and different lags. In this study, we considered a series lagged
by 12 observations (series D), but other lags were evaluated over shorter distances. Further, the
correlation between signals with different lags was also correctly identified. Lastly, an application
with real data to identify seasonal and other cyclical correlations was demonstrated by the WCC.
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RESUMO. A estimação da correlação entre dados independentes usando estimadores
clássicos, como o coeficiente de Pearson, está bem estabelecida na literatura. No entanto,
tais estimadores são inadequados para analisar a correlação entre dados dependentes. Ex-
istem vários tipos de dependência, sendo as dependências serial (temporal) e espacial as
mais comuns, as quais são inerentes aos dados de várias áreas. Usando uma análise de série
temporal bivariada pode-se avaliar a relação entre duas séries. Além disso, como uma série
temporal pode estar relacionada com outra em alguma defasagem de tempo (seja para o pas-
sado ou para o futuro), é essencial também considerar correlações defasadas. A função de
correlação cruzada (CCF), que assume que cada série tem uma distribuição normal e não é
autocorrelacionada, é usada com freqüência. No entanto, mesmo quando uma série temporal
é normalmente distribuı́da, a autocorrelação ainda é inerente a uma ou ambas séries tem-
porais, comprometendo as estimativas obtidos usando o CCF e suas interpretações. Como
uma alternativa a este problema, a análise usando a correlação cruzada wavelet (WCC)
foi proposta. O WCC é baseado na transformada wavelet não decimada (NDWT), a qual
é uma transformação invariante à translação e decompõe dados dependentes em múltiplas
escalas, cada uma representando o comportamento de uma banda de frequências diferente.
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Para demonstrar a aplicabilidade deste método, dados simulados e reais de séries temporais
de diferentes processos estocásticos foram analisados. Os resultados demonstraram que as
análises baseadas em o CCF pode não representar a realidade; no entanto, o WCC pode ser
usado para identificar corretamente a correlação em cada escala. Além disso, o intervalo
de confiança (IC) para os resultados da análise do WCC foi estimado para determinar a
significância estatı́stica.

Palavras-chave: Análise Multiescala, Série Temporal, Correlação Cruzada, Transformada
Wavelet Não Decimada.
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