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ABSTRACT. In this paper, we give some applications of Nachbin’s Theorem [4] to approximation and
interpolation in the the space of all k times continuously differentiable real functions on any open subset of
the Euclidean space.
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1 INTRODUCTION

Let Ω be an open subset of R p and let k be a nonnegative integer. We denote by Ck(Ω;R) the
algebra of all k times continuously differentiable real functions on Ω and consider the compact
open topology of order k τk

u , that is, the topology of uniform convergence for the functions and
all their partial derivatives up to the order k on compact subsets of Ω.

For a multi-index α = (α1, · · · ,αp) ∈N p
0 of non-negative integers, let |α| := α1 + · · ·+αp be

the order of α , α! := α1! · · ·αp!, and for |α| ≤ p let Dα := ∂ |α|/∂xα1
1 · · ·∂xαp

p represents the
corresponding linear partial differential operator acting on Ck(Ω;R).

The topology τk
u is generated by the semi-norms σk,Γ given by

σk,Γ( f ) = ∑
|α|≤k

1
α!

sup{|(Dα f )(x)| : x ∈ Γ} for all f ∈Ck(Ω;R),

where Γ runs over all compact subsets of Ω. By Proposition 3, p. 8 [5], Ck(Ω;R) is a topological
vector space with respect to this topology.

In 1949 Nachbin [4] established the following interesting characterization of dense subalgebras
of the space Ck(Ω;R).
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466 APPLICATIONS OF NACHBIN’S THEOREM

Theorem 1. (Nachbin) Let Ω be an open subset of R p and L be a subalgebra of Ck(Ω;R). Then
L is dense in Ck(Ω;R) if and only if the following conditions are satisfied:

(a) given x,y ∈Ω with x 6= y, there exists f ∈ L such that f (x) 6= f (y);

(b) given x ∈Ω, there exists f ∈ L such that f (x) 6= 0;

(c) given x ∈Ω and u ∈R p with u 6= 0, there exists f ∈ L such that ∂ f
∂u (x) 6= 0.

The proof of this result can be found in [3] and [4].

Our aim is to use Nachbin’s theorem to give a proof of a density theorem and a simultaneous
interpolation and approximation theorem in the space Ck(Ω;R).

2 THE RESULTS

The Urysohn’s Lemma ([2] p. 281) for differentiable functions is the main tool we employed in
the next lemma.

Lemma 1. Let Ω be an open subset of R p, w1, . . . ,wm distinct points in Ω, and y1, . . . ,ym distinct
real numbers. If L is a dense vector subspace of Ck(Ω;R), then there exists a function h∈ L such
that h(w j) = y j, j = 1, . . . ,m.

Proof. Let L be a dense linear subspace of Ck(Ω;R) and S = {w1, . . . ,wm} be a subset of Ω.

Consider the following linear mapping

T : Ck(Ω;R) → Rm

f 7→ ( f (w1), . . . , f (wm)).

Notice that T is continuous.

For each wi ∈ S consider an open neighborhood Ui ⊂Ω of wi such that w j /∈Ui, for all j 6= i, j ∈
{1, ...,m}. It follows from the Urysohn’s Lemma for differentiable functions that there exists an
infinitely differentiable function Φi : Rm→ R, 0≤Φi ≤ 1, such that Φi(wi) = 1 and Φi(x) = 0,
if x /∈Ui, in particular, Φi(w j) = 0, j 6= i. Let φi = Φi|Ω the restriction of the function Φi to the
subset Ω and ei ∈Rm the vector whose ith coordinate is equal to 1 and the others are equal to 0.

The linear mapping T is surjective since for any (c1, . . . ,cm) ∈Rm, we have

(c1, . . . ,cm) =
m

∑
i=1

ciei =
m

∑
i=1

ci(φi(w1), . . . ,φi(wm)) =
m

∑
i=1

ciT (φi) = T

(
m

∑
i=1

ciφi

)
,

where ∑
m
i=1 ciφi ∈ Ck(Ω;R). Moreover, T (L) is closed because it is a linear subspace of Rm.

Then by density of L and continuity of T , it follows that

Rm = T (Ck(Ω;R)) = T (L)⊂ T (L) = T (L). (2.1)

Tend. Mat. Apl. Comput., 19, N. 3 (2018)
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Therefore, for any (y1, . . . ,ym) ∈ Rm there exists h ∈ L such that T (h) = (y1, . . . ,ym), that is,
(h(w1), . . . ,h(wm)) = (y1, . . . ,ym).

We give a proof of the following density result.

Theorem 2. Let V be an open subset of R p, L a dense subalgebra of Ck(V ;R), and v1, . . . ,vn

distinct points in V. Consider the open subset of R p,

Ω =V \{v1, . . . ,vn}

and the subalgebra

M = { f |Ω : f ∈ L, f (v1) = . . .= f (vn) = 0}.

Then, M is dense in Ck(Ω;R).

Proof. Clearly M is a subalgebra of Ck(Ω;R). Let x,y be any distinct points in Ω. Consider the
following subset

S = {x,y,v1, . . . ,vn}

of V. By Lemma 1 there exists h∈ L such that h(x) = 1, h(y) =−1 and h(v j) = 0 for j = 1, . . . ,n.
Then, h|Ω ∈M and satisfies Conditions (a) and (b) of Theorem 1.

Now let z ∈ Ω and u ∈ R p, u 6= 0. It follows from Lemma 1 that there exists g ∈ L such that
g(z) = 1 and g(v j) = 0 for j = 1, . . . ,n. Hence, g|Ω ∈ M. If ∂g

∂u (z) 6= 0 the Condition (c) of
Theorem 1 is satisfied. Otherwise, notice that L is not a subset of

B =

{
f ∈Ck(V ;R) :

∂ f
∂u

(z) = 0
}
,

since L is a dense subalgebra of Ck(V ;R) and B is a proper closed subalgebra of Ck(V ;R).

Thus, there exists φ ∈ L such that ∂φ

∂u (z) 6= 0. Then, φg ∈ L and φg(v j) = 0 for j = 1, . . . ,n, that
is, φg|Ω ∈M. Moreover,

∂φg
∂u

(z) =
∂φ

∂u
(z)g(z)+φ(z)

∂g
∂u

(z) =
∂φ

∂u
(z)g(z) =

∂φ

∂u
(z) 6= 0.

Thus, by Theorem 1, M is dense in Ck(Ω;R).

For each positive integer l, P l(R p,R) denotes the linear subspace of Ck(R p;R) generated by
the set of all functions of the form

p(x) = [ψ(x)]l , x ∈R p,

where ψ ∈ (R p)∗, the dual space of R p. The elements of P l(R p,R) are called the l-
homogeneous continuous polynomials of finite type from R p into R. The subspace of
Ck(R p;R) consisting of all functions of the form
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468 APPLICATIONS OF NACHBIN’S THEOREM

p(x) = p0 +
l

∑
j=1

p j(x), x ∈R p

where p0 ∈ R, p j ∈P j(R p,R), j = 1, . . . , l, l ∈N , is denoted by P(R p,R). Its elements
are called real continuous polynomials of finite type. The polarization formula shows that
P(R p,R) is a subalgebra of Ck(R p;R). Indeed, given ψ1 and ψ2 in (R p)∗,

ψ1(x)ψ2(x) =
1
4
[(ψ1(x)+ψ2(x))2− (ψ1(x)−ψ2(x))2]

shows that ψ1ψ2 ∈P2(R p,R), since ψ1 +ψ2 and ψ1−ψ2 belong to (R p)∗.

Corollary 3. Let v1, . . . ,vn be distinct points in R p. Consider the open subset of R p,

Ω = R p \{v1, . . . ,vn}

and the subalgebra

M = { f |Ω : f ∈P(R p;R), f (v1) = . . .= f (vn) = 0}.

Then, M is dense in Ck(Ω;R).

Proof. First of all, we verify that the subalgebra P(R p;R) is dense in Ck(R p;R). Given
x,y∈R p with x 6= y, it follows from Hahn-Banach Theorem that there exists ψ ∈ (R p)∗ such that
ψ(x) 6= ψ(y). Since (R p)∗ = P1(R p;R)⊂ P(R p;R), the Condition (a) of Theorem 1 is satis-
fied. By definition, P(R p;R) contains all the constant functions. Now, let 0 6= u = (u1, ...,up) ∈
R p. Then, there exists 0 6= u j ∈ R, j ∈ {1, ..., p}. Let Π j : R p → R defined by Π j(x) = x j,

x ∈R p. Since ∂Π j
∂x j

(x) = 1 and ∂Π j
∂xi

(x) = 0 for i 6= j, it follows that

∂Π j

∂u
(x) =

p

∑
i=1

ui
∂Π j

∂xi
(x) = u j 6= 0.

Therefore, by Theorem 1, P(R p;R) is dense in Ck(R p;R) and the assertion follows from
Theorem 2.

Motivated by an extended Stone-Weierstrass theorem (see Corollary 1.1 [1]), we give a proof of
a result concerning simultaneous interpolation and approximation in Ck(Ω;R). The tools are the
Nachbin’s Theorem and the following result due to Deutsch.

Theorem 4. (Deutsch) Let Y be a dense vector subspace of the topological vector space Z and
let T1, ...,Tn be continuous linear functionals on Z. Then for each f ∈ Z and each neighborhood
U of f there is y ∈ Y such that y ∈U and Ti(y) = Ti( f ), i = 1, ...,n.

Theorem 5. Let Ω be an open subset of R p, x1, ...,xn distinct elements of Ω and L a subalgebra
of Ck(Ω;R) that satisfies the following conditions,

Tend. Mat. Apl. Comput., 19, N. 3 (2018)
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(a) given x,y ∈Ω with x 6= y, there exists f ∈ L such that f (x) 6= f (y);

(b) given x ∈Ω, there exists f ∈ L such that f (x) 6= 0;

(c) given x ∈Ω and u ∈R p with u 6= 0, there exists f ∈ L such that ∂ f
∂u (x) 6= 0.

Then, for each f ∈ Ck(Ω;R), and each neighborhood U of f there exists g ∈ L∩U such that
f (xi) = g(xi) for i = 1, . . . ,n.

Proof. It follows from Theorem 1 that L is a dense subalgebra of the topological vector space
Ck(Ω;R). Let S = {x1, ...,xn} ⊂Ω. Notice that

Ti : Ck(Ω;R) → R

f 7→ f (xi)

is a continuous linear functional for each i = 1, · · · ,n. Setting Z = Ck(Ω;R) and Y = L, the
conclusion follows from Theorem 4.
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RESUMO. Em 1949, Leopoldo Nachbin estabeleceu uma versão do Teorema de Stone-
Weierstrass para funções diferenciáveis de classe Ck em abertos do espaço euclidiano. Neste
trabalho, apresentamos algumas aplicacões desse teorema relacionadas com aproximação e
interpolação no espaço das funções de classe Ck munido da topologia compacto-aberta.

Palavras-chave: Teorema de Nachbin, aproximação de funções diferenciáveis, Teorema
de Stone-Weierstrass, interpolação.
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