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ABSTRACT. Let P = ({1,2, . . . ,n},≤) be a poset that is an union of disjoint chains of the same length
and V = FN

q be the space of N-tuples over the finite field Fq. Let Vi = Fki
q , with 1 ≤ i ≤ n, be a family of

finite-dimensional linear spaces such that k1 + k2 + . . .+ kn = N and let V =V1×V2× . . .×Vn endow with
the poset block metric d(P,π) induced by the poset P and the partition π = (k1,k2, . . . ,kn), encompassing
both Niederreiter-Rosenbloom-Tsfasman metric and error-block metric. In this paper, we give a complete
description of group of isometries of the metric space (V,d(P,π)), also called the Niederreiter-Rosenbloom-
Tsfasman block space. In particular, we reobtain the group of isometries of the Niederreiter-Rosenbloom-
Tsfasman space and obtain the group of isometries of the error-block metric space.

Keywords: error-block metric, poset metric, Niederreiter-Rosenbloom-Tsfasman metric, ordered
Hamming metric, isometries, automorphisms.

1 INTRODUCTION

One of the main classical problem of the coding theory is to find sets with qk elements in FN
q , the

space of N-tuples over the finite field Fq, with the largest minimum distance possible. There are
many possible metrics that can be defined in FN

q , but the most common ones are the Hamming
and Lee metrics.

In 1987 Harald Niederreiter generalized the classical problem of coding theory (see [8]): given
positive integers s and m1, . . . ,ms, to find sets C of vectors ci j ∈ FN

q , for 1≤ i≤ s and 1≤ j≤mi,
with the largest minimum sum ∑

s
i=1 di, where the minimum is extended over all integers d1, . . . ,ds

with 0≤ di≤mi for 1≤ i≤ s and ∑
s
i=1 di≥ 1 for which the subset {ci, j : 1≤ i≤ s and 1≤ j≤ di}

is linearly dependent in FN
q . The classical problem corresponds to the special case where s > m

and mi = 1 for all 1≤ i≤ s.

*Corresponding author: Luciano Panek – E-mail: luciano.panek@unioeste.br
1Centro de Engenharias e Ciências Exatas, UNIOESTE, Av. Tarquı́nio Joslin dos Santos, 1300, 85870-650, Foz do
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272 GROUP OF ISOMETRIES OF NIEDERREITER-ROSENBLOOM-TSFASMAN BLOCK SPACE

Brualdi, Graves and Lawrence (see [2]) also provided in 1995 a wider situation for the Niederre-
iter’s problem: using partially ordered sets (posets) and defining the concept of poset codes, they
started to study codes with a poset metric. Later Feng, Xu and Hickernell ( [4], 2006) introduced
the block metric, by partitioning the set of coordinate positions of FN

q into families of blocks.
Both kinds of metrics are generalizations of the Hamming metric, in the sense that the latter is
attained when considering the trivial order (in the poset case) or one-dimensional blocks (in the
block metric case). In 2008, Alves, Panek and Firer (see [1]) combined the poset and block struc-
ture, obtaining a further generalization, the poset block metrics. As a unified reading we cite the
book of Firer et al. [5].

A particular instance of poset block codes and spaces, with one-dimensional blocks, are the
spaces introduced by Niederreiter in 1991 (see [8]) and Rosenbloom and Tsfasman in 1997
(see [12]), where the posets taken into consideration have a finite number of disjoint chains of
equal size. This spaces are of special interest since there are several rather disparate applications,
as noted by Rosenbloom and Tsfasman (see [12]) and Park e Barg (see [11]).

In [7], [3] and [10] the groups of linear isometries of poset metrics were determined for the
Rosenbloom-Tsfasman space, crown space and arbitrary poset-space respectively. In [9] we de-
scribe the full isometry group (which includes non-linear isometries) of a poset metric that is a
product of Rosenbloom-Tsfasman spaces and in [6] the author studied the full isometry group
to any poset metric. The full description of the group of linear isometries of a poset block space
were determined by Alves, Panek and Firer in [1].

In this work, we describe the group of isometries (not necessarily linear ones) of the poset block
space whose underlying poset is a finite union of disjoint chains of same length. We call this
space the Niederreiter-Rosenbloom-Tsfasman block space (or NRT block space, for short).

2 POSET BLOCK METRIC SPACE

Let [n] := {1,2, . . . ,n} be a finite set with n elements and let ≤ be a partial order on [n]. We call
the pair P := ([n] ,≤) a poset and say that k is smaller than j if k ≤ j and k 6= j. An ideal in
([n] ,≤) is a subset I ⊆ [n] that contains every element that is smaller than some of its elements,
i.e., if j ∈ I and k ≤ j, then k ∈ I. Given a subset X ⊆ [n], we denote by 〈X〉 the smallest ideal
containing X , called the ideal generated by X . An order on the finite set [n] is called a linear
order or a chain if any two elements are comparable, that is, given i, j ∈ [n] we have that either
i≤ j or j≤ i. In this case, n is said to be the length of the chain and the set can be labeled in such
a way that i1 < i2 < .. . < in. For the simplicity of the notation, in this situation we will always
assume that the order P is defined as 1 < 2 < .. . < n.

Let q be a power of a prime, Fq be the finite field of q elements and V := FN
q the N-dimensional

vector space of N-tuples over Fq. Let π = (k1,k2, . . . ,kn) be a partition of N, that is,

N = k1 + k2 + . . .+ kn,

Tend. Mat. Apl. Comput., 21, N. 2 (2020)
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PANEK and PANEK 273

with ki > 0 an integer. For each integer ki, let Vi := Fki
q be the ki-dimensional vector space over

the finite field Fq and define
V =V1×V2× . . .×Vn,

called the π-direct product decomposition of V . A vector v ∈V can be uniquely decomposed as

v = (v1,v2, . . . ,vn),

with vi ∈Vi for each 1≤ i≤ n. We will call this the π-direct product decomposition of v. Given
a poset P = ([n],≤), we define the poset block weight ω(P,π)(v) (or simply the (P,π)-weight) of
a vector v = (v1,v2, . . . ,vn) to be

ω(P,π)(v) :=| 〈supp(v)〉 |

where supp(v) := {i ∈ [n] : vi 6= 0} is the π-support of the vector v and |X | is the cardinality of
the set X . The block structure is said to be trivial when ki = 1, for all 1≤ i≤ n. The (P,π)-weight
induces a metric d(P,π) on V , that we call the poset block metric (or simply (P,π)-metric):

d(P,π)(u,v) := ω(P,π)(u− v).

The pair (V,d(P,π)) is a metric space and where no ambiguity may rise, we say it is a poset block
space, or simply a (P,π)-space.

An isometry of (V,d(P,π)) is a bijection T : V →V that preserves distance, that is,

d(P,π)(T (u),T (v)) = d(P,π)(u,v),

for all u,v ∈ V . The set Isom(V,d(P,π)) of all isometries of (V,d(P,π)) is a group with the nat-
ural operation of composition of functions, and we call it the isometry group of (V,d(P,π)). An
automorphism is a linear isometry.

In [9] the group of isometries of a product of Niederreiter-Rosenbloom-Tsfasman spaces is char-
acterized. In [6] is studied a subgroup of the full isometry group for any given poset. In this
work, we will describe the full isometry group of an important class of poset block spaces,
namely, those induced by posets that are an union of disjoint chains of the same length. This
class includes the block metric spaces over chains and the Niederreiter-Rosembloom-Tsfasman
spaces with trivial block structures.

We remark that the initial idea is the same as in [9]. The main differences are that we follow
a more coordinate free approach an that the dimensions of the blocks pose a new restraint. We
first study the isometry group of NRT block space induced by one simple chain (Theorem 1),
analogous to those of [9]. In this work, we prove some results on isometries, also anologous to
those of [9], plus a result on preservation of block dimensions (Lemma 4), and conclude that
Isom(V,d(P,π)) is the semi-direct product of the direct product of the isometry groups induced by
each chain and the automorphism group of the permutations of chains that preserves the block
dimensions (Theorem 6).

Tend. Mat. Apl. Comput., 21, N. 2 (2020)
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274 GROUP OF ISOMETRIES OF NIEDERREITER-ROSENBLOOM-TSFASMAN BLOCK SPACE

3 ISOMETRIES OF LINEAR ORDERED BLOCK SPACE

Let P = ([n],≤) be the linear order 1 < 2 < .. . < n, let π = (k1,k2, . . . ,kn) be a partition of N
and let

V =V1×V2× . . .×Vn,

where Vi = Fki
q , for i = 1,2, . . . ,n, be the π-direct product decomposition of the vector space

V =FN
q endow with the poset block metric d(P,π). In this section we will describe the full isometry

group of the poset block space (V,d(P,π)). This description will be used in the next section to
describe the isometry group of the NRT block space. In this section, P = ([n],≤) will be the
linear order 1 < 2 < .. . < n.

We note that, given u = (u1, . . . ,un) and v = (v1, . . . ,vn) in the total ordered block space V ,

d(P,π)(u,v) = max{i : ui 6= vi}.

For each i ∈ {1,2, . . . ,n}, let

Fi : Vi×Vi+1× . . .×Vn→Vi

be a map that is a bijection with respect to the first block space Vi, that is, given (vi+1, . . . ,vn) ∈
Vi+1× . . .×Vn, the map F̃vi+1,...,vn : Vi→Vi defined by

F̃vi+1,...,vn (vi) = Fi (vi,vi+1, . . . ,vn)

is a bijection. Let Sq,π,i be the set of such maps Fi. Given Fi ∈ Sq,π,i, with 1≤ i≤ n, we define a
map T(F1,F2,...,Fn) : V →V by

T(F1,F2,...,Fn)(v1, . . . ,vn) := (F1(v1, . . . ,vn),F2(v2, . . . ,vn), . . . ,Fn(vn)).

Theorem 1. Let P = ([n],≤) be the linear order 1 < 2 < .. . < n and let V = V1×V2× . . .×Vn

be the π-direct product decomposition of V = FN
q endowed with the poset block metric induced

by the poset P and the partition π . Then, the group Isom(V,d(P,π)) of isometries of (V,d(P,π)) is
the set of all maps T(F1,F2,...,Fn) : V →V .

Proof. Given u = (u1, . . . ,un) and v = (v1, . . . ,vn) ∈ V , let l = d(P,π)(u,v) = max{i : ui 6= vi}.
Since each Fi : Vi×Vi+1× . . .×Vn → Vi is a bijection in relation to the first block space Vi, it
follows that

Fl(ul ,ul+1, . . . ,un) 6= Fl(vl ,vl+1, . . . ,vn)

and
Ft(ut ,ut+1, . . . ,un) = Ft(vt ,vt+1, . . . ,vn)

for any t > l. It follows that

d(P,π)
(
T(F1,...,Fn)(u),T(F1,...,Fn)(v)

)
= max{i : Fi(ui, . . . ,un) 6= Fi(vi, . . . ,vn)}= l

Tend. Mat. Apl. Comput., 21, N. 2 (2020)
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and hence T(F1,F2,...,Fn) is distance preserving. Since V is a finite metric space, it follows that
T(F1,F2,...,Fn) is also a bijection.

Now let T be an isometry of V . Let us write

T (v1,v2, . . . ,vn) = (T1 (v1,v2, . . . ,vn) , . . . ,Tn (v1,v2, . . . ,vn)) .

We prove first that Tj (v1,v2, . . . ,vn) = Fj
(
v j,v j+1, . . . ,vn

)
, that is, Tj does not depend on the first

j−1 coordinates. In other words, we want to prove that

Tj
(
v1, . . . ,v j−1,v j, . . . ,vn

)
= Tj

(
u1, . . . ,u j−1,v j, . . . ,vn

)
regardless of the values of the first j−1 coordinates. Since

d(P,π)
((

u1, . . . ,u j−1,v j, . . . ,vn
)
,
(
v1, . . . ,v j−1,v j, . . . ,vn

))
= max

i
{i : vi 6= ui}

≤ j−1

and since T is an isometry, it follows that

d(P,π)
(
T
(
v1, . . . ,v j−1,v j, . . . ,vn

)
,T
(
u1, . . . ,u j−1,v j, . . . ,vn

))
=

= d(P,π)
((

u1, . . . ,u j−1,v j, . . . ,vn
)
,
(
v1, . . . ,v j−1,v j, . . . ,vn

))
≤ j−1,

and so,
Tj
(
v1, . . . ,v j−1,v j, . . . ,vn

)
= Tj

(
u1, . . . ,u j−1,v j, . . . ,vn

)
,

for any (v1, . . . ,v j−1),(u1, . . . ,u j−1) ∈V1× . . .×Vj−1 and (v j, . . . ,vn) ∈Vj× . . .×Vn. Thus,

T (v1,v2, . . . ,vn) = (F1 (v1,v2, . . . ,vn) ,F2 (v2, . . . ,vn) , . . . ,Fn (vn))

and the first statement is proved. Now, we need to prove that each F̃vi+1,...,vn is a bijection, what
is equivalent to prove those maps are injective. If F̃vi+1,...,vn is not injective, then there are vi 6= ui

in Vi such that
F̃vi+1,...,vn (vi) = F̃vi+1,...,vn (ui) .

Considering i minimal with this property, it follows that

i = d(P,π) ((v1, . . . ,vi, . . . ,vn) ,(v1, . . . ,ui, . . . ,vn))

= d(P,π) (T (v1, . . . ,vi, . . . ,vn) ,T (v1, . . . ,ui, . . . ,vn))< i

contradicting the assumption that T is an isometry of (V,d(P,π)). �

Let Sm be the symmetric group of permutations of a set with m elements and V = V1×V2×
. . .×Vn be the π-direct product decomposition of V = FN

q with π = (k1,k2, . . . ,kn). Since V has
qN elements we can identify the group Sq,π,1 of functions F : V1×V2× . . .×Vn→ V1 such that
F̃v2,...,vn is a permutation of V1 = Fk1

q , with operation

(F ·G)(v) := F(G(v1,v2, . . . ,vn),v2, . . . ,vn),

Tend. Mat. Apl. Comput., 21, N. 2 (2020)
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with F,G ∈ Sq,π,1 and v = (v1,v2, . . . ,vn) ∈ V , with the direct product1
(

Sqk1

)qN−k1

. With this
notations, it follows the following result.

Theorem 2. Let P = ([n],≤) be the linear order 1 < 2 < .. . < n and let V =V1×V2× . . .×Vn be
the π-direct product decomposition of V = FN

q endowed with the poset block metric induced by
the poset P and the partition π . If π = (k1,k2, . . . ,kn), then the group of isometries Isom(V,d(P,π))
has a semi-direct product2 structure given by

(Sqk1 )
qN−k1o

(
. . .
(
(Sqkn−1 )

qN−k1−k2−...−kn−1o(Sqkn )
qN−k1−k2−...−kn−1−kn

)
. . .
)
.

Proof. Let G(P̂,π̂) be the isometry group Isom(V̂ ,d(P̂,π̂)) of

V̂ = V̂1×V̂2× . . .×V̂n−1,

where V̂i =Vi+1 for each i = 1,2, . . . ,n−1, P̂ = ([n−1],≤) is the linear order 1 < 2 < .. . < n−1
and π̂ = (k2,k3, . . . ,kn). Let

H = {T ∈ Isom(V,d(P,π)) : T = (F1,PrV2 , . . . ,PrVn) with F1 ∈ Sq,π,1}

and
K = {T ∈ Isom(V,d(P,π)) : T = (PrV1 ,F2, . . . ,Fn) with Fi ∈ Sq,π,i},

where each PrVi :Vi×Vi+1× . . .×Vn→Vi is the projection map given by PrVi(vi,vi+1, . . . ,vn)= vi.
We claim that Isom(V,d(P,π)) is a semi-direct product of H by K. Clearly, Isom(V,d(P,π)) = HK,
because each isometry of (V,d(P,π)) is a composition T1 ◦ T2 with T1 ∈ H and T2 ∈ K. Let
L ∈ H ∩K. Since L ∈ H, L(x1,x2, . . . ,xn+1) = (x′1,x2, . . . ,xn+1) and, since L is also in K, it
follows that x′1 = x1. Hence, L = idV and the groups H and K intersect trivially. Now, we
prove that H is a normal subgroup of Isom(V,d(P,π)). In fact, since Isom(V,d(P,π)) = HK, it
suffices to check that T HT−1 ⊂ H for each T ∈ K. Let L ∈ H and T ∈ K. Then L(x1, . . . ,xn) =

(F1(x1, . . . ,xn),x2, . . . ,xn) and T (x1, . . . ,xn) = (x1, T̃ (x2, . . . ,xn)) for some F1 ∈ Sq,π,1 and T̃ ∈
Isom(V̂ ,d(P̂,π̂)). If (x1, . . . ,xn) ∈V , then(

T ◦L◦T−1)(x1, . . . ,xn) = (T ◦L)
(

x1, T̃−1 (x2, . . . ,xn)
)

= T
(

F1

(
x1, T̃−1 (x2, . . . ,xn)

)
, T̃−1 (x2, . . . ,xn)

)
=
(

F1

(
x1, T̃−1 (x2, . . . ,xn)

)
, T̃ ◦ T̃−1 (x2, . . . ,xn)

)
=
(

F1

(
x1, T̃−1 (x2, . . . ,xn)

)
,x2, . . . ,xn

)
.

1If H1, . . . ,Hl are groups, then their direct product, denoted by H1 × . . .×Hl , is the group with elements (h1, . . . ,hl),
hi ∈ Hi for each 1≤ i≤ l, and with operation (h1, . . . ,hl)(h′1, . . . ,h

′
l) = (h1h′1, . . . ,hlh′l).

2Let G be a group with identity 1G and let N1 and Q1 be subgroups of G. We recall that the group G is a semi-direct
product of N by Q (see [13], p. 167), denoted by G = NoQ, if N ∼= N1, Q∼= Q1, N1∩Q1 = {1G}, N1Q1 = G and N1 is a
normal subgroup of G.

Tend. Mat. Apl. Comput., 21, N. 2 (2020)
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Since F1 is a bijection with respect to the first block space V1, it follows that T LT−1 ∈ H. This
shows that H is a normal subgroup of Isom(V,d(P,π)) and that

Isom(V,d(P,π)) = H oK.

In order to simplify notation, we will denote the elements of
(

Sqk1

)qN−k1

by (πX ), where

(πX ) := (πX )X∈FN−k1
q

.

The group G(P̂,π̂) acts on V =V1×V̂ by

T (x1, . . . ,xn) = (x1,T (x2, . . . ,xn))

and (Sqk1 )
qN−k1 acts by

(πX )(x1, . . . ,xn) =
(
π(x2,...,xn) (x1) ,x2, . . . ,xn

)
.

Both groups act as groups of isometries and both act faithfully. Therefore these actions establish
isomorphisms of these groups with subgroups H and K: H ∼= (Sqk1 )

qN−k1 and K ∼= G(P̂,π̂). Using
the aforementioned isomorphisms involving H and K, it follows that

Isom(V,d(P,π)) = (Sqk1 )
qN−k1 oG(P̂,π̂),

which concludes the proof. �

Corollary 3. Let P = ([n],≤) be the linear order 1 < 2 < .. . < n and let V =V1×V2× . . .×Vn

be the π-direct product decomposition of V = FN
q endowed with the poset block metric induced

by the poset P and the partition π . If

H = {T ∈ Isom(V,d(P,π)) : T = (F1,PrV2 , . . . ,PrVn) with F1 ∈ Sq,π,1}

and
K = {T ∈ Isom(V,d(P,π)) : T = (PrV1 ,F2, . . . ,Fn) with Fi ∈ Sq,π,i},

then3

Isom(V,d(P,π))∼= Hoθ K

with θ : K→ Aut(H) given by

θT (L)(x1,x2, . . . ,xn) =
(

F1

(
x1, T̃−1 (x2, . . . ,xn)

)
,x2, . . . ,xn

)
for all L = (F1,PrV2 , . . . ,PrVn) ∈ H, T = (PrV1 ,F2, . . . ,Fn) ∈ K and (x1, . . . ,xn) ∈ V with T̃ :=
(F2, . . . ,Fn).

3Given groups Q and N and a homomorphism θ : Q→ Aut(N), then N×Q equipped with the operation (a,x)(b,y) :=
(aθx(b),xy) is a semi-direct product of N by Q (see [13], Theorem 7.22), denoted by Noθ Q. If G = NoQ and θx(a) =
xax−1, for all x ∈ Q and a ∈ N, then G∼= Noθ Q (see [13], Theorem 7.23).

Tend. Mat. Apl. Comput., 21, N. 2 (2020)
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Corollary 4. Let P = ([n],≤) be the linear order 1 < 2 < .. . < n and let V =V1×V2× . . .×Vn

be the π-direct product decomposition of V = FN
q endowed with the poset block metric induced

by the poset P and the partition π = (k1,k2, . . . ,kn). Then

|Isom(V,d(P,π))|= (qk1 !)qN−k1 · (qk2 !)qN−k1−k2 · . . . · (qkn−1 !)q · (qkn !).

Now, if the partition π = (1,1, . . . ,1), it follows the following result (see [9], Corollary 3.1):

Corollary 5. Let P = ([n],≤) be the linear order 1 < 2 < .. . < n and let V = Fn
q be the vec-

tor space endowed with the poset metric induced by the poset P. Then the group of isometries
Isom(V,dP) is a semi-direct product

(Sq)
qn−1

o(. . .((Sq)
qoSq) . . .).

In particular,

|Isom(V,dP)|= (q!)
qn−1
q−1 .

4 ISOMETRIES OF NRT BLOCK SPACE

In this section, we consider an order P = ([m ·n],≤), that is, the union of m disjoint chains
P1,P2, . . . ,Pm of order n. We identify the elements of [m · n] with the set of ordered pairs of
integers (i, j), with 1≤ i ≤ m, 1 ≤ j ≤ n, where (i, j)≤ (k, l) iff i = k and j ≤N l, where ≤N is
just the usual order on N. We denote Pi = {(i, j) : 1≤ j≤ n}. Each Pi is a chain and those are the
connected components of ([m ·n],≤).

Let π = (k11, . . . ,k1n, . . . ,km1, . . . ,kmn) be a partition of N = mn and for each 1 ≤ i ≤ m let πi =

(ki1, . . . ,kin). Let
V =U1×U2× . . .×Um, (4.1)

where
Ui :=Vi1×Vi2× . . .×Vin

and Vi j =Fki j
q , for all 1≤ i≤m, 1≤ j≤ n. The space V with the poset metric induced by the order

P = ([m ·n],≤) is called the (m,n,π)-NRT block space. Note that if n = 1, then P = ([m ·1],≤)
induces just the error-block metric on V , and in particular, if π =(1,1, . . . ,1), then P=([m ·1],≤)
induces just the Hamming metric on Fm

q . Hence the induced metric from the poset P= ([m ·n],≤)
can be viewed as a generalization of the error-block metric.

Let V = U1 ×U2 × . . .×Um as in (4.1), called the canonical decomposition of V . Given the
canonical decompositions u = (u1, . . . ,um) and v = (v1, . . . ,vm) with ui,vi ∈Ui, we have that

d(P,π)(u,v) =
m

∑
i=1

d(Pi,πi)(ui,vi),
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where d(Pi,πi), the restriction of d(P,π) to Ui, is a linear poset block metric. We note that the
restriction of d(P,π) to each Ui turns it into a poset space defined by a linear order, that is, each Ui

is isometric to (Ui,d([n],πi)) with the metric d([n],πi) determined by the chain 1 < 2 < .. . < n. Let
Gi,πi,n be the group of isometries of (Ui,d([n],πi)). The direct product ∏

m
i=1 Gi,πi,n acts on V in the

following manner: given T = (T1, . . . ,Tm) ∈∏
m
i=1 Gi,πi,n and v = (v1, . . . ,vm) ∈V ,

T (v) := (T1(v1), . . . ,Tm(vm)).

Lemma 1. Let (V,d(P,π)) be the (m,n,π)-NRT block space over Fq and let Gi,πi,n be the group of
isometries of

(
Ui,d([n],πi)

)
. Given Ti ∈ Gi,πi,n, with 1 ≤ i ≤ m, the map T = (T1, . . . ,Tm) defined

by
T (v) := (T1(v1), . . . ,Tm(vm))

is an isometry of (V,d(P,π)).

Proof. Given u,v ∈ V , consider the canonical decompositions u = (u1, . . . ,um) and v =

(v1, . . . ,vm) with ui,vi ∈Ui. Then,

d(P,π) (T (u),T (v)) =
m

∑
i=1

d(Pi,πi) (Ti(ui),Ti(vi))

=
m

∑
i=1

d(Pi,πi) (ui,vi)

= d(P,π) (u,v) ,

which concludes the proof. �

Let Sm be the permutation group of {1,2, . . . ,m}. We will call a permutation σ ∈ Sm admissible if
σ(i) = j implies that kil = k jl , for all 1≤ l ≤ n. Cleary, the set Sπ of all admissible permutations
is a subgroup of Sm.

Let us consider the canonical decomposition v = (v1, . . . ,vm) of a vector v in the (m,n,π)-
NRT block space V . The group Sπ acts on V as a group of isometries: given σ ∈ Sπ and
v = (v1, . . . ,vm) ∈V , we define

Tσ (v) = (vσ(1),vσ(2), . . . ,vσ(m)).

Lemma 2. Let (V,d(P,π)) be the (m,n,π)-NRT block space V and let σ ∈ Sπ . Then Tσ is an
isometry of (V,d(P,π)).

Proof. Given u,v ∈ V , we consider their canonical decompositions u = (u1, . . . ,um) and v =

(v1, . . . ,vm) with ui,vi ∈Ui. Then,

Tend. Mat. Apl. Comput., 21, N. 2 (2020)
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d(P,π) (Tσ (u),Tσ (v)) =
m

∑
i=1

d(Pi,πi)

(
uσ(i),vσ(i)

)
=

m

∑
i=1

d(Pi,πi) (ui,vi)

= d(P,π) (u,v) ,

which concludes the proof. �

The Lemmas 1 and 2 assure that the groups ∏
m
i=1 Gi,πi,n and Sπ are both isometry groups of

the (m,n,π)-NRT block space V , and so is the group G(m,n,π) generated by both of them. We
identify ∏

m
i=1 Gi,πi,n and Sπ with their images in G(m,n,π) and make an abuse of notation, denoting

the images in G(m,n,π) by the same symbols. With this notation, analogous calculations as those
of Theorem 2 show that (

m

∏
i=1

Gi,πi,n

)
∩Sπ = {idV}

and

σ ◦

(
m

∏
i=1

Gi,πi,n

)
◦σ
−1 =

m

∏
i=1

Gi,πi,n,

for every σ ∈ Sπ . Since ∏
m
i=1 Gi,πi,n is normal in G(m,n,π) and G(m,n,π) is generated by ∏

m
i=1 Gi,πi,n

and Sπ , it follows that

G(m,n,π) =

(
m

∏
i=1

Gi,πi,n

)
·Sπ ,

and therefore, it follows the following proposition:

Proposition 3. The group G(m,n,π) has the structure of a semi-direct product given by(
m

∏
i=1

Gi,πi,n

)
oSπ .

We need two more lemmas in order to prove that every isometry of the (m,n,π)-NRT block space
V is in G(m,n,π), i.e., that G(m,n,π) is the group of isometries of V . We will identify the block space
Ui of V with the subspace of V of vectors v = (v1, . . . ,vm) such that v j = 0 for j 6= i.

Lemma 4. Let (V,d(P,π)) be the (m,n,π)-NRT block space and let V =U1×U2×·· ·×Um be the
canonical decomposition of V . If

π = (k11, . . . ,k1n, . . . ,km1, . . . ,kmn)

and T : V →V is an isometry such that T (0) = 0, then for each index 1≤ i≤ m there is another
index 1≤ j ≤ m such that

T (Ui) =U j

Tend. Mat. Apl. Comput., 21, N. 2 (2020)
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and
kil = dim(Vil) = dim(Vjl) = k jl ,

for all 1≤ l ≤ n.

Proof. In the following we denote the subspace Vi1×Vi2× . . .×Vik by Uik. We begin by showing
that for each index 1 ≤ i ≤ m there is another index 1 ≤ j ≤ m such that T (Ui1) = U j1 and
ki1 = k j1. Let vi ∈Ui1, with vi 6= 0. Since

d(P,π)(T (vi),0) = d(P,π)(vi,0) = 1,

it follows that v j = T (vi) is a vector of (P,π)-weight 1. Thus T (vi) ∈U j1 for some index 1≤ j≤
m. If v′i ∈Ui1, with v′i 6= vi and v′i 6= 0, then T (v′i) = vk for some vk ∈Uk1 with vk 6= 0, but also

d(P,π)(T (vi),T (v′i)) = d(P,π)(vi,v′i) = 1.

If k 6= j, then d(P,π)(T (vi),T (v′i)) = d(P,π)(v j,vk) = 2. Hence k = j and T (Ui1)⊆U j1. Now apply
the same reasoning to T−1. If vi ∈Ui1, with vi 6= 0, and T (vi) = v j with v j ∈U j1, then T−1(v j) ∈
Ui1 and therefore T−1(U j1) ⊆ Ui1. So that U j1 ⊆ T (Ui1). Therefore T (Ui1) = U j1. Since T is
bijective, it follows that ki1 = k j1. For induction on k, suppose that for each s there exists an
index l such that

T (Usk) =Ulk

and ks j = kl j for all 1 ≤ j ≤ k and for all 1 ≤ k ≤ n. We note that Usn = Us. Without loss of
generality, let us consider s = 1, P1 = {(1,1), . . . ,(1,n)}. Let Pl be the chain that begins at (l,1)
such that T (U11) =Ul1 and suppose that U1(k−1) is taken by T onto Ul(k−1) with k1 j = kl j for all
1≤ j ≤ k−1. Let v = (v11, . . . ,v1k), v1i ∈V1i with v1k 6= 0, and let T (v) = (u1, . . . ,um), ui ∈Ui.
Since T (0) = 0, it follows that

ω(P,π)(v) = ω(P,π)(T (v)) = ω(P,π)(u1)+ . . .+ω(P,π)(um).

We will use this to show that T (v) = ul . First suppose that ul = 0. In this case, ω(P,π)(v) =
∑ j 6=l ω(P,π)(u j) and therefore, if u11 ∈U11, with u11 6= 0 and T (u11) = ul1, then

k = d(P,π)(u11,v) = d(P,π)(T (u11),T (v)) = ∑
j 6=l

ω(P,π)(u j)+ω(P,π)(ul1) = k+1,

a contradiction. Hence ul 6= 0. Let ul = (ul1, . . . ,ult), uli ∈ Vli, and suppose now there is an-
other summand ui 6= 0. Then k =∑

j
ω(P,π)(u j)> ω(P,π)(ul) and therefore t < k. By the induction

hypothesis, it follows that T−1(ul) is a vector in V1(k−1) with ω(P,π)(T−1(ul))< k. Hence

k = d(P,π)(T
−1(ul),v) = d(P,π)(ul ,T (v)) = ∑

j 6=l
ω(P,π)(u j)< k,

again a contradiction. Hence, T (v) ∈Ulk. From the induction hypothesis and from the fact that T
is a weight-preserving bijection, it follows that

T (v11, . . . ,v1k) = (ul1, . . . ,ulk),

where v1k 6= 0 implies ulk 6= 0. Therefore, T (U1k) =Ulk. Since k1 j = kl j for all 1≤ j ≤ k−1 and
T is a bijection, it follows that k1k = klk. Hence T (U1) =Ul with k1 j = kl j for all 1≤ j ≤ n. �
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We recall that we defined an action of the group Sπ of the admissible permutations of Sm on the
canonical decomposition U1×U2×·· ·×Um of V by

Tσ (v) := (vσ(1),vσ(2), . . . ,vσ(m))

and that we defined an action of ∏
m
i=1 Gi,πi,n on V by

(g1,g2, . . . ,gm)(v1,v2, . . . ,vm) = (g1(v1), . . . ,gm(vm)).

Lemma 5. Let (V,d(P,π)) be the (m,n,π)-NRT block space. Each isometry of V that preserves the
origin is a product Tσ ◦g, with σ in Sπ and g in ∏

m
i=1 Gi,πi,n.

Proof. Let T be an isometry of V , with T (0) = 0. By the Lemma 4, for each 1 ≤ i ≤ m there is
a σ(i) such that T (Ui) =Uσ(i) with kil = kσ(i)l for all 1≤ l ≤ n. Since T is a bijection, it follows
that the map i 7→ σ(i) is an admissible permutation of the set {1, . . . ,m}. We define Tσ : V →V
by

Tσ (v) := (vσ(1),vσ(2), . . . ,vσ(m)).

Thus, T = T−1
σ (Tσ T ) = Tσ−1(Tσ T ), where σ ∈ Sπ . Let g = Tσ T . Since g(Ui) = (Tσ T )(Ui) =

Tσ (Uσ(i)) =Uσ−1σ(i) =Ui, we have that g|Ui is an isometry of Ui. Defining gi := g|Ui it follows
that g = (g1, . . . ,gm), and hence, g ∈∏

m
i=1 Gi,πi,n. �

Theorem 6. Let (V,d(P,π)) be the (m,n,π)-NRT block space. The group of isometries of V is
isomorphic to (

m

∏
i=1

Gi,πi,n

)
oSπ .

Proof. Let G(m,n,π) be the group of isometries of V generated by the action of ∏
m
i=1 Gi,πi,n and

Sπ . Let T be an isometry of V and let v = T (0). The translation S−v(u) := u− v is clearly an
isometry of V and (S−v ◦T )(0) = S−v(v) = 0 is an isometry that fixes the origin. Hence, by the
previous lemma, it follows that S−v ◦T ∈G(m,n,π). Consider the canonical decomposition of v on
the chain spaces, v = (v1, . . . ,vm), vi ∈Ui. Since the restriction Svi of Sv = (Sv1 , . . . ,Svm) to Ui,
with Svi(ui) = ui +vi for each i, is the translation by vi, it follows that is an isometry of Ui. Thus,
Sv ∈∏

m
i=1 Gi,πi,n ⊂ G(m,n,π) and hence, that T = Sv ◦ (S−v ◦T ) is in G(m,n,π). Thus G(m,n,π) is the

isometry group of V . By Proposition 3, it follows that G(m,n,π) is isomorphic to (∏m
i=1 Gi,πi,n)oSπ .

�

If n = 1 (P is an antichain) and π = (k1,k2, . . . ,km), where

k1 = . . .= km1 = l1, . . . ,km1+...+ml−1+1 = . . .= km1+...+ml = lr

with l1 > .. . > lr and m1, . . . ,ml positive integers such that m1 + . . .+ml = m, it follows that
Gi,(ki),1 = Sqki , for 1≤ i≤m, and Sπ = Sm1× . . .×Sml (Sπ only permutes those blocks with same
dimensions). Therefore it follows the following result.
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Corollary 7. If P is an antichain, then

Isom(V,d(P,π)) =

(
m

∏
i=1

Sqki

)
o

(
l

∏
i=1

Smi

)
.

When n = 1 and π = (1,1, . . . ,1), the (P,π)-weight is the usual Hamming weight on Fm
q . In this

case, each Gi,(1),1 in Corollary 7 is equal to Sq and every permutation in Sm is also admissible.
Thus, we reobtain the isometry groups of Hamming space:

Corollary 8. Let dH be the Hamming metric over Fm
q . The isometry group of (Fm

q ,dH) is
isomorphic to Sm

q oSm.

If π = (1,1, . . . ,1), then every permutation in Sm is admissible. Hence, it follows the following
result (see [9], Theorem 4.1):

Corollary 9. Let V = Fmn
q be the vector space endowed with the poset metric dP induced by the

poset P = ([mn],≤) which is union of chains P1, . . . ,Pm of length n. Then

Isom(V,dP) = (Gn)
moSm,

where Gn := (Sq)
qn−1o(. . .((Sq)

qoSq) . . .). In particular,

|Isom(V,dP)|= (q!)m· q
n−1
q−1 +m ·m!.

5 AUTOMORPHISMS

The group of automorphisms of
(
V,d(P,π)

)
is easily deduced from the Lemma 5 and Theorem 6.

Let T = Tσ ◦ g be a isometry. Since Tσ is linear, it follows that the linearity of T is a matter of
whether g is linear or not. Now, if g = (g1,g2, . . . ,gm) is linear, then each component gi must also
be linear. Since each gi is an isometry, it follows that gi is in the group Aut

(
Ui,d([n],πi)

)
of linear

isometries of (Ui,d([n],πi)). Therefore g ∈∏
m
i=1 Aut

(
Ui,d([n],πi)

)
. On the other hand, any element

of this group is a linear isometry. Hence, it follows the following result:

Theorem 1. The automorphism group Aut
(
V,d(P,π)

)
of
(
V,d(P,π)

)
is isomorphic to(

m

∏
i=1

Aut
(
Ui,d([n],πi)

))
oSπ .

Corollary 2. Let n = 1 and π = (k1,k2, . . . ,km) be a partition of N. If

k1 = . . .= km1 = l1, . . . ,km1+...+ml−1+1 = . . .= kn = lr
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with l1 > l2 > .. . > lr, then

∣∣Aut
(
FN

q ,d(P,π)
)∣∣=( m

∏
i=1

(
qki −1

)(
qki −q

)
. . .
(

qki −qki−1
))
·

(
l

∏
j=1

m j!

)
.

Proof. Note initially that there is a bijection from Aut (Ui) and the family of all ordered bases of
Ui. Let

(
e1,e2, . . . ,eki

)
be an ordered basis of Ui. If T ∈Aut (Vi), then

(
T (e1) ,T (e2) , . . . ,T

(
eki

))
is an ordered basis of Ui. If

(
v1,v2, . . . ,vki

)
is an ordered basis of Ui, then there exists a unique

automorphism T with T (e j) = v j for all j ∈ {1,2, . . . ,ki}. Since the number of ordered basis of
Ui is equal to (

qki −1
)(

qki −q
)
. . .
(

qki −qki−1
)

follows that |Aut (Ui)|=
(
qki −1

)(
qki −q

)
. . .
(
qki −qki−1

)
. Since

Aut
(
Ui,d([n],πi)

)
= Aut(Ui)

for each i, from Theorem 1

∣∣Aut
(
FN

q ,d(P,π)
)∣∣=( m

∏
i=1
|Aut (Ui)|

)
· |Sπ | .

Since |Sπ |= ∏
l
j=1 m j!, it follows the result. �

Restricting to the Hamming case again, it follows that

Aut
(
Ui,d([n],πi)

)
= Aut (Ui) = Aut (Fq)' F∗q

and Sπ = Sm, and therefore, it follows the following corollary:

Corollary 3. The automorphism group of
(
Fm

q ,dH
)

is
(
F∗q
)moSm.
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RESUMO. Seja P = ({1,2, . . . ,n},≤) um conjunto parcialmente ordenado dado por uma
união disjunta de cadeias de mesmo comprimento e V = FN

q o espaço vetorial das N-uplas
sobre o corpo finito Fq. Seja V = V1×V2× . . .×Vn um produto direto de V , em blocos
de subespaços Vi = Fki

q com k1 + k2 + . . .+ kn = N, munido com a métrica de blocos or-
denados d(P,π) induzida pela ordem P e pela partição π = (k1,k2, . . . ,kn). Neste trabalho
descrevemos o grupo de isometrias do espaço métrico (V,d(P,π)).

Palavras-chave: métrica de bloco, métrica de ordem, métrica de Niederreiter-Rosenbloom-
Tsfasman, isometrias, automorfismos.
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