
TEMA Tend. Mat. Apl. Comput., 11, No. 1 (2010), 77-87.

c© Uma Publicação da Sociedade Brasileira de Matemática Aplicada e Computacional.

Combination of Models Obtained by

Regression in the Wavelet Domain1

L.A. PINTO2, Instituto Tecnológico de Aeronáutica, Divisão de Engenharia
Eletrônica, 12228-900 São José dos Campos, SP, Brasil.
Instituto Federal do Espírito Santo, Coordenadoria de Engenharia de Controle e
Automação, 29164-231 Serra, ES, Brasil.

R.K.H. GALVÃO3, Instituto Tecnológico de Aeronáutica, Divisão de Engenharia
Eletrônica, 12228-900 São José dos Campos, SP, Brasil.

Abstract. The wavelet transform is a useful tool to preprocess and compress

datasets for linear regression modelling. However, the prediction performance of the

resulting model depends on the choice of wavelet filter and number of decomposition

levels, which may not be a straightforward task. This paper proposes an alternative

approach, which consists of combining models obtained from different wavelet

decompositions of the dataset. For this purpose, a method is developed to convert

wavelet regression models back to the original domain. The proposed approach

is illustrated in a case study involving the determination of density in gasoline

samples by using infrared spectroscopy. The results are favourably compared to

those obtained by using individual wavelet decompositions.
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1. Introdution

The wavelet transform (WT) has been used in a variety of signal processing
applications, such as filtering [10], compression [24] and classification [8]. In
particular, the WT has become a popular tool in a field of Analytical Chemistry
known as Multivariate Calibration (MC) [7, 15]. The MC problem consists of
building a mathematical model for estimation of physical or chemical properties of
a sample from indirect measurements. Such measurements could be, for instance,
emission, absorption or reflection intensities acquired over different wavelengths [20].
Applications of MC include determination of metals in steel alloys [16], analysis of
composition of pharmaceutical formulae [5] and prediction of fuel properties [3],
among many others.
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In the MC context, the WT is typically implemented by using filter bank
algorithms [14]. Models are then built by applying regression techniques to the
wavelet coefficients resulting from the bank filter decomposition [4, 6, 23]. In many
applications, such a procedure led to improvements in the prediction performance
of the resulting models [24]. However, the result usually depends on the choice
of wavelet filter (Daubechies, Coiflet, or Symlet, for example [22] and number of
decomposition levels. In fact, such choices are still an open problem in the MC
literature. Usually, the authors refer to results previously obtained for similar
datasets [7, 23] or choose one out of several combinations of wavelets filters and
decomposition levels according to the performance of the resulting model [1, 15].

In view of these difficulties, the present paper proposes a new approach, which
consists of combining models obtained from different wavelet decompositions. For
this purpose, a method is developed to convert wavelet regression models back to the
original domain. In this manner, the combination can be carried out by averaging
the regression coefficients of the individual models. The proposed approach is
illustrated in a study case involving the determination of density in gasoline samples
by using infrared spectroscopy.

2. The Wavelet Transform Implementation

The continuous wavelet transform (CWT) of a signal x ∈ L2(R) can be defined as

CWT (a, b) =
1

√

|a|

∫

∞

−∞

x(λ)ψ

(

λ− b

a

)

dλ,

where ψ ∈ L2(R) is the mother wavelet function and a, b ∈ R (a 6= 0) are the
scale and translation parameters, respectively [22]. The magnitude of CWT (a, b) is
associated with the spectral content of x(λ) around λ = b. Small scales correspond
to high frequency values and vice-versa.

The discrete wavelet transform (DWT) can be obtained from the CWT by
discretizing the scale and translation parameters as a = aj

0 and b = kb0a
j
0, where

j, k ∈ Z and a0 > 1, b0 > 0 [22]. The DWT with a0 = 2, b0 = 1 (dyadic
discretization) can be implemented in a computationally efficient manner by using
a digital filter bank [14, 22]. The input sequence to such a filter corresponds to a
sampled version of x, which will be denoted by x.

Figure 1 presents the decomposition and reconstruction filter banks for cal-
culation of the DWT and its inverse, respectively. In this example, a single
decomposition level is employed. The basic structure of the decomposition filter
bank consists of a pair of low-pass (h) and high-pass (g) filters, followed by a
dyadic downsampling operation (↓ 2). The g filter can be associated to a mother
wavelet. In the same manner, the h filter can be associated to a so-called “scaling
function” [22]. The downsampled outputs of the low-pass and high-pass filters
are termed approximation (c) and detail (d) coefficients, respectively. Sequences
c, d will henceforth be termed “wavelet coefficients”. The filtering/downsampling
operations can be reapplied to the approximation coefficients in order to obtain
further approximations and details at lower resolution (i.e. larger scale) levels.
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The h and g filters are typically of finite length, and therefore each approximation
or detail coefficient corresponds to a section of the original signal. This spatial
localization feature is one of the main advantages of the wavelet tranform over the
Fourier transform [22].
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Figure 1: Filter bank implementation of the DWT (decomposition) and its inverse
(reconstruction).

In the reconstruction filter bank, the approximation and detail coefficients
undergo an operation in which zeros are inserted at the positions corresponding
to the coefficients removed by the dyadic downsampling. The upsampled ap-
proximation and detail sequences are then filtered by lowpass (hr) and highpass
(gr) reconstruction filters, respectively. In an orthogonal filter bank, these filters
correspond to their decomposition counterparts in reverse order [6, 22].

The low-pass and high-pass filtering operations are carried out by convolution of
the input signal with the filtering sequences (indicated by the ∗ symbol in Fig. 1).
If the signal has finite length (which is usually the case), some boundary extension
procedure must be employed [19, 22]. In the present work, the constant extension
method (also termed smooth padding of order 0) is adopted [19]. Such a method
leads to less pronounced border effects, as compared to periodic extension [6, 22]
and zero padding [19]. However, the resulting transformation from the input signal
to the wavelet coefficients is not orthogonal, even if an orthogonal filter bank is
employed. Therefore, regression models in the wavelet domain cannot be converted
back to the original domain by simple application of the reconstruction filter bank
[22]. In the next section, a method is proposed to circumvent this problem.

3. Conversion of Wavelet Regression Models to the

Original Domain

For illustration, let x = [x1 x2 x3 x4 x5]
T and h = [h1 h2 h3 h4]

T represent
a signal of length five and a low-pass filter of length four, respectively. The
convolution and downsampling operations result in four approximation coefficients
c = [c1 c2 c3 c4]

T . The mapping from x to c can be expressed in matrix form as
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c = Hx , where

H =









(h2 + h3 + h4) h1 0 0 0
h4 h3 h2 h1 0
0 0 h4 h3 (h1 + h2)
0 0 0 0 (h1 + h2 + h3 + h4)









assuming constant boundary extension. Similarly, the detail coefficients
d = [d1 d2 d3 d4]

T can be obtained as d = Gx , where G is built from the
high-pass filter weights g = [g1 g2 g3 g4]

T .
A linear regression model in the wavelet domain can be written as

ŷ = ξ+(w1c1+w2c2+w3c3+w4c4)+(z1d1+z2d2+z3d3+z4d4) = ξ+wT c+zT d (3.1)

where ŷ is an estimate of the dependent variable y, ξ is an offset term and
w = [w1 w2 w3 w4]

T , z = [z1 z2 z3 z4]
T are the regression coefficients. In

view of the relations c = Hx and d = Gx , (3.1) can be rewritten as

ŷ = ξ + (wT H + zT G)x. (3.2)

On the other hand, the regression model in the original domain would be of the
form

ŷ = b0 + b1x1 + b2x2 + b3x3 + b4x4 + b5x5 = b0 + bT x, (3.3)

where b = [b1 b2 b3 b4 b5]
T . Therefore, from (3.2) and (3.3), it follows that

ξ + (wT H + zT G)x = b0 + bT x.

Since this identity must hold for any x ∈ R
5, one must have b0 = ξ and

b = HT w + GT z (3.4)

Equation (3.4) can also be written as b = bh + bg, where bh = HTw, bg = GTz.
In the general case, for a signal x of odd length equal to K and a low-pass filter

of length L, the number of approximation coefficients will be M = (K + L− 1)/2.

The transformation from w = [w1 w2 · · · wM ]
T to bh =

[

bh1 b
h
2 · · · bhK

]T
can be

expressed as bh = HT w, where

HT =

























P
L

i=2
hi

P
L

i=4
hi · · · hL 0 · · · 0 · · · 0 0

h1 h3 · · · hL−1 0 · · · 0 · · · 0 0

0 h2 · · · hL−2 hL · · · 0 · · · 0 0

0 h1 · · · hL−3 hL−1 · · · 0 · · · 0 0

.

..
.
..

.

..
.
..

.

..
.
..

.

..
.
..

.

..
.
..

0 0 · · · 0 0 · · · h5 · · · 0 0

0 0 · · · 0 0 · · · h4 · · · hL 0

0 0 · · · 0 0 · · · h3 · · · hL−1 0

0 0 · · · 0 0 · · · h1 + h2 · · ·
P

L−2

i=1
hi

P
L

i=1
hi

























As can be seen, bh can be obtained applying the reconstruction filter bank to
w and correcting the endpoints bh1 and bhK as

bh1 = w1

L
∑

i=2

hi + w2

L
∑

i=4

hi + · · · + w(L/2)−1

L
∑

i=L−2

hi + wL/2hL (3.5)
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bhK =wM+1−(L/2)

2
∑

i=1

hi + wM+2−(L/2)

4
∑
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hi + · · · + wM−1

L−2
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hi + wM

L
∑

i=1

hi

Coefficients bg1, b
g
2, ..., bgK can be obtained from z1, z2, ..., zM in exactly the same

manner by using the high-pass filter weights g1, g2, ..., gL.
If the signal length K is even, the number of approximation coefficients will be

M = (K + L − 2)/2. The expression for bh1 is still given by (3.5), but bhK will be
calculated as

bhK = wM+1−(L/2)h1 + wM+2−(L/2)

3
∑

i=1

hi + · · · + wM−1

L−3
∑

i=1

hi + wM

L−1
∑

i=1

hi

The procedure described above can be applied to obtain the regression coef-
ficients in the original domain from the regression coefficients associated to the
first decomposition level of the filter bank. If the filter bank comprises more than
one decomposition level, this procedure must be applied in a recursive manner to
obtain the regression coefficients at the level j from the regression coefficients at
level (j + 1), where j = 0 corresponds to the original domain.

4. Combination of Wavelet Regression Model

The proposed method consists of two phases [17]. In the first phase (“Generation of
Models”), individual regression models are constructed for N different configurations
(wavelet filter and number of decomposition levels) of the filter bank. In the present
work, the Stepwise Regression algorithm [9] is adopted for this purpose. After
conversion to the original domain, the nth model obtained can be written as

ŷ(n) = b
(n)
0 +

K
∑

k=1

b
(n)
k xk (4.1)

For instance, if two different wavelet filters (Daubechies 4 and 5, for example)
and one up to three decomposition levels are employed, then N = 2 × 3 = 6.

In the second phase (“Combination of Models”), the individual models are
averaged in order to obtain an ensemble model of the form

ŷav = bav
0 +

K
∑

k=1

bav
k xk, (4.2)

where bav
0 = (1/N)

∑N
n=1 b

n
0 and bav

k = (1/N)
∑N

n=1 b
(n)
k , k = 1, ...,K.

In this work, three model combination strategies are compared. “Strategy 1”
consists of combining models obtained by using the same wavelet filter, but with
different decomposition levels. “Strategy 2” consists of combining models obtained
with the same number of decomposition levels, but with different wavelet filters.
Finally, “Strategy 3” consists of combining models obtained by varying both the
wavelet filters and the decomposition levels.
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5. Application Example

The proposed method was applied to the problem of estimating the density of
gasoline samples by infrared spectroscopy. The dataset consisted of 104 samples
with absorbance spectra acquired at 6443 wavelengths. In order to eliminate
undesirable baseline fluctuations, first derivative spectra were calculated by using a
Savitzky-Golay filter [2] with a 2nd-order polynomial and an 11-point window. For
illustration, Figures 2a and 2b present the original and derivative spectra of one of
the samples.
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Figure 2: (a) Original and (b) derivative spectrum of a gasoline sample.

The Kennard-Stone algorithm [12, 13] was applied to select 73 calibration
samples, which were employed to build the regression models. The 31 remaining
samples formed a separate test set, which was used to compare the performance
of the resulting models. In order to reduce computational workload in the model-
building phase, a preliminary compression procedure was applied to the wavelet
coefficients. Compression was carried out by discarding the smallest wavelet
coefficients (in absolute value) while retaining 99% of the explained variance [18].

Stepwise Regression was employed with α-entry and α-exit values of 0.01 [9].
The individual models were constructed by employing 19 different filters from
the Daubechies (db2-db10), Symlet (sym4-sym8) and Coiflet (coif1-coif5) families
[1, 7, 15, 23]. In each case, the numbers of decomposition levels was varied from
one to a maximum of J . The value of J was set by imposing that at least one
wavelet coefficient should still refer to the original signal (without extension). For
the data set at hand, the decomposition levels corresponding to each wavelet filter
were the following: one up to eleven (db2), one up to ten (db3, coif1), one up to
nine (db4, db5, db6, coif2, sym4, sym5 and sym6), one up to eight (db7, db8, db9,
db10, coif3, coif4, sym7 and sym8) and one up to seven (coif5). Therefore, a total
of 165 individual models were obtained.

The resulting models were analyzed according to two metrics, namely: (i)



Combination of Models Obtained by Regression in the Wavelet Domain 83

RMSEP (root-mean-square error of prediction) obtained in the test set and (ii)
the 2-norm (||b||2) of the regression vector. The RMSEP value is defined as

RMSEP =

√

√

√

√

1

Nt

Nt
∑

i=1

(ŷi − yi)
2
,

where ŷi, yi denote the predicted and reference values of density (in g/cm3) of the
ith sample of the test set (i = 1, . . . , Nt, with Nt = 31). The value of ||b||2 is an
indicator of model sensitivity to noise in the x measurements [11, 21].

All calculations were carried out in the Matlab R© 6.5 software (using functions
from the Wavelet and Statistics Toolboxes), by using a computer with an Intel Core
2 Duo processor (1.86GHz, 3MB cache) and 3.5GB RAM.

6. Results

Figure 3a presents the results obtained by using Strategy 1. Each circle corresponds
to an ensemble model obtained for a given wavelet filter over different decomposition
levels. In contrast, each square corresponds to the average result of individual
models obtained for a given wavelet filter over different decomposition levels. The
RMSEP values obtained by using Strategy 1 range from 0.8 × 10−3 to 1.0 × 10−3,
whereas the values for ||b||2 vary between 8.9 and 20.2. As can be seen, the proposed
strategy leads to an improvement over the average results of the individual models,
which range from 1.1 × 10−3 to 1.5 × 10−3 for RMSEP, and from 19.3 to 34.2 for
||b||2. It is worth noting that the results are further improved by using Strategy 3,
as indicated by a star symbol in the plot. In this case, the RMSEP and ||b||2 values
are 0.8 × 10−3 and 6.3 (that is, Strategy 3 matches the best RMSEP obtained by
Strategy 1, with a smaller ||b||2 value).

The results obtained by using Strategy 2 are presented in Figure 3b. In this case,
each circle corresponds to an ensemble model obtained for a given decomposition
level over different wavelet filters. For comparison, each square corresponds to
the average result of individual models obtained for a given decomposition level
over different wavelet filters. Again, the ensemble models (RMSEP ranging from
0.7×10−3 to 1.1×10−3 and ||b||2 ranging from 6.6 to 22.5) can be seen to outperform
the individual ones (RMSEP ranging from 1.1×10−3 to 1.5×10−3 and ||b||2 ranging
from 16.9 to 40.2). It is worth noting that the best RMSEP for the ensemble models
(0.7×10−3) is smaller than the RMSEP value obtained with Strategy 3 (0.8×10−3).
However, ||b||2 is slightly smaller for Strategy 3.

In terms of computational workload, the three proposed strategies can be
compared as follows. The construction of each individual model entails the wavelet
decomposition of the derivative spectra, the preliminary compression applied to
the wavelet coefficients, the Stepwise Regression procedure and the conversion
of the model back to the original domain. On average, such operations were
completed in 2.2 seconds. The overall time required to build an ensemble model
in Strategy 1 ranged from 14 to 22 seconds, depending on the number of different
decomposition levels employed in the combination. In Strategy 2, the time ranged
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Figure 3: (a) Results of ensemble models obtained by using Strategy 1 (O) and
Strategy 3 (*). Each � symbol indicates the average result of individual models
obtained for a given wavelet filter over different decomposition levels. (b) Results
of ensemble models obtained by using Strategy 2 (O) and Strategy 3 (*). Each
� symbol indicates the average result of individual models obtained for a given
decomposition level over different wavelet filters.

from 4 to 38 seconds, depending on the number of different wavelets employed in
the combination. Strategy 3, in which 165 individual models are combined, required
a total of 364 seconds.

As can be seen, the proposed model combination strategies are more time-
consuming than the conventional approach of using a single wavelet filter and
decomposition level. However, after an ensemble model has been constructed, the
time required for subsequent prediction calculations (Equation 4.2) is the same as
that of an individual model (Equation 4.1).

Finally, although Strategy 3 requires a larger computational workload, practical
aspects may favour its adoption over Strategies 1 and 2. In fact, Strategy 1 still
requires the analyst to choose a particular wavelet filter for the model-building
process, whereas Strategy 2 requires the a priori choice of the number of resolution
levels. In this sense, Strategy 3 is an “easier-to-use" approach, which provides
results (RMSEP and ||b||2) similar to those of the best ensemble models obtained
by Strategies 1 and 2 in the present study.

For illustration, Figure 4 presents the density predictions obtained by using
Strategy 3. As can be seen, there is good agreement between predicted and reference
values, both in the calibration and test data sets.

7. Conclusions

This paper reported two contributions, namely a procedure to convert wavelet
regression models back to the original domain, and a method for generating
ensemble models by using filter banks with different configurations. The proposed
method can be used as an alternative to the selection of a particular wavelet filter
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Figure 4: Prediction results for Strategy 3: calibration (N) and test (▽) data sets.

and an appropriate number of decomposition levels, which is still a matter of much
discussion in the literature.

For illustration, a case study involving the determination of density in gasoline
by infrared spectroscopy was presented. In this application example, the ensemble
models provided better results, in terms of prediction error and noise sensitivity, as
compared to individual models obtained by the conventional approach.

Future works could be concerned with criteria to ascribe different weights to the
models in the combination. Such weights could be related to the performance of
the individual models as assessed, for instance, by cross-validation.
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Resumo. A Transformada Wavelet é uma ferramenta útil para pré-processamento

e compressão de dados em calibração multivariada. Contudo, a sua aplicação requer

a escolha da wavelet e do número de níveis de decomposição a serem empregados,

o que pode não ser uma tarefa simples. Este artigo propõe uma abordagem

alternativa, que consiste em combinar modelos de regressão calibrados a partir

de diferentes decomposições wavelet. Para isso, foi desenvolvido um método para

converter ao domínio original modelos de regressão calibrados no domínio wavelet.

Como ilustração, apresenta-se um estudo de caso envolvendo a determinação da

densidade de gasolina por espectroscopia no infravermelho. Os resultados indicam

que a abordagem proposta é uma alternativa vantajosa ao uso de uma única

decomposição wavelet para construção do modelo.
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