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ABSTRACT. In this paper, we deal with the Capacitated Lot Sizing and Scheduling Problem with sequence
dependent setup times and costs – CLSD model. More specifically, we propose a simple reformulation
for the CLSD model that enables us to define a new branching rule to be used in Branch-and-Bound (or
Branch-and-Cut) algorithms to solve this NP-hard problem. Our branching rule can be easily implemented
in commercial solvers. Computational tests performed in 240 test instances from the literature show that our
approach can significantly reduce the running time to solve this problem using a Branch-and-Cut algorithm
of a commercial MIP solver. Therefore, our approach can also improve the performance of other approaches
that need to solve partial sub problems of the CLSD model in each iteration, such as Lagrangian approaches
and heuristics based on the mathematical formulation of the problem.

Keywords: Lot Sizing, scheduling, Mixed Integer Linear Programming, Branch-and-Bound algorithm.

1 INTRODUCTION

In most production environments, companies need to decide on the size of production lots in
order to obtain efficient inventory management and reduce costs. High inventory levels cause
high holding costs and low inventory levels may cause undesirable delays in meeting customer
demands.

The lot sizing problem (LP) consists of determining the optimal size of production lots with the
aim to minimize costs and meet customer demands. The LP has received special attention from
researchers due to its importance for the global economy ([10]).

On the other hand, the scheduling problem consists of determining the sequence of production
lots in order to minimize the time and cost generated by product changeovers on production lines.
When the cost and time generated by product changeovers depends on previously produced items
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and the item to be produced, it can be said that there is a sequence-dependent setup time and/or
cost structure.

According to [1], when there is a sequence-dependent setup time/cost structure, the decisions
about the size of production lots and the sequence of production need to be taken simultane-
ously, because the solution obtained by an hierarchical approach may be infeasible or suboptimal.
Therefore, the simultaneous lot sizing and scheduling problem (LSP) consists of simultaneously
deciding the sizes and production sequences.

In the literature, there are various mathematical models to deal with LSP. We highlight the ca-
pacitated lot sizing and scheduling with sequence dependent setups – CLSD model ([13]), the
general lot sizing and scheduling problem – GLSP model ([9], [16]) and the reformulation of
GLSP model proposed in [5] – CC model. Recent reviews of the models to deal with LSP are
presented in [12, 1, 6].

In [12], the authors compare various mathematical models for LSP and by using theoretical and
computational results, it could be concluded that the CLSD model is a promising formulation
to deal with LSP. The CLSD model has an interesting performance in exact solution approaches
such as Brand-and-Bound algorithms from commercial MIP solvers.

In this paper, we introduce a very simple reformulation for the CLSD model (the CLSDw model)
that allows us to introduce a new branching rule able to significantly improve the computational
performance of this model in Branch-and-Bound (Branch-and-Cut) algorithms. Therefore, our
approach can be used to improve the performance of commercial solvers and approaches to
deal with LSP that need to solve partial sub problems, such as Lagrangian approaches and MIP
based heuristics.

We use a set of 240 test instances from the literature to compare the performance of the tradi-
tional CLSD with our approach in a commercial powerful solver Cplex 12.60. Computational
results show that our approach can significantly improve the performance of the solver Cplex,
reducing running time and proving optimality for more test instances. This paper is organized
as follows: Section 2 presents a literature review for LSP; Section 3 presents the mathemati-
cal formulation CLSDw and the branching rule and Section 4 presents the computational results
comparing the performance of the traditional CLSD model with our approach in the Branch-and-
Cut algorithm from Cplex 12.60. Finally, the conclusions and future proposals are presented in
Section 5. Details of the computational implementation are given in the appendix.

2 LITERATURE REVIEW

[9] introduced the GLSP model to deal with LSP. The GLSP model considered several items
to be produced on a single machine (production line) with dynamic deterministic demand and
sequence-dependent setup costs and no setup times. This model is based on the idea that consists
of splitting to split each period into several micro periods (with varying sizes) where only one
item can be produced. Therefore, by determining which items will be produced in each micro
period, the production lot schedules can then be automatically determined.

Tend. Mat. Apl. Comput., 18, N. 3 (2017)
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The original GLSP model was reformulated in [20] using a network flow problem structure and
in [5] suppressed the setup state variables in the model. Computational tests performed in [12]
showed that both reformulations can provide better dual bounds by solving linear relaxation than
the dual bounds obtained by solving the linear relaxation of the GLSP model.

In [13], the CLSD model was introduced using another strategy, consisting of introducing con-
straints and variables from the travelling salesman problem to map the start time and end time
of production of each item in each period, to model the sequencing decisions. The CLSD model
considers, originally, a single-stage system where several items have to be produced on a single
machine in a finite planning horizon supposing a known dynamic deterministic demand which
must be completely satisfied without backlogging.

Mixed integer programming models based on the CLSD model have been proposed to deal with
problems from various real world production environments, such as [15], which addressed a
yogurt industry and [21], which studied a semiconductor assembly and test manufacturing.

In other papers, extensions of the GLSP model were compared with the extension of the CLSD
model to deal with different real problems. For example, [2] addressed the LSP on parallel pro-
duction lines that need to be equipped with tools for processing. Models inspired by GLSP and
CLSD were developed to synchronize these tools on the production lines. Computational tests
showed that the CLSD model has a much better performance than the GLSP model considering
the runtime and the ability to find feasible solutions.

Computational tests in [12] showed that the CLSD model performs better than all the models
that use micro period structures. In particular, the CLSD model presented a lower average devi-
ation from the best known solution (GAP) and running time than other models.

The LSP is a NP-complete problem ([9, 16, 17]) where instances based on real world problems
can be difficult to solve by exact algorithms at an acceptable computational time. Therefore,
various heuristic approaches have been developed to deal with the LSP. For example, [13] pro-
posed a backward oriented heuristic to solve the LSP model without setup times, while [17]
proposed a threshold accepting methaheuristic to deal with LSP considering sequence dependent
setup times.

Heuristics based on the mathematical formulation of the problem (MIP based heuristics) have
been frequently used to solve the LSP, in particular, the relax-and-fix – RF and fix-and-optimise
– FO. FO heuristics have obtained good solutions for various types of lot sizing and scheduling
problems and various heuristics approaches combining RF and FO heuristics have been proposed
in the literature, such as [3, 7, 8, 22, 19].

In the simplified case, the RF heuristic split the set of all binary variables (B) of the model into
a finite number of small subsets (Br ⊂ B, r = 1, . . . , R) and, in each iteration r ∈ {1, . . . , R},
the binary variables in the sets Bk with k < r have their values fixed at the incumbent value
(obtained from the previous iterations), while the binary variables in the sets Bl with l > r are
linearly relaxed and all variables without fixed values are optimized. In this way, in iteration r,
a smaller mixed integer linear program is solved with the variables in the set Br considered as
binaries. Usually, RF heuristics are used to obtain an initial solution.

Tend. Mat. Apl. Comput., 18, N. 3 (2017)
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The FO is an improvement heuristic that starts in any feasible solution and in each iteration a
subset of binary variables are re-optimized while the other binary variables have their values fixed
on the value of the incumbent solution. For lot sizing and scheduling problems, the most used
variable partitions are by periods, products and production lines. FO heuristics can also be used
with an exact method (matheuristics). For example, [11] combined FO with column generation
and [4] integrated FO with the Variable Neighbourhood Search – VNS methaheuristic.

Therefore, as MIP based heuristics solve, in each iteration, a small mixed integer linear pro-
gramming model, these heuristics can be improved if a good model and a good exact solution
algorithm are used to solve the sub problems in each iteration. Therefore, the reformulation and
the branch rule proposed in this paper can improve the computational performance of some MIP
based heuristics to deal with LSP.

3 MODEL FORMULATION AND SOLUTION APPROACH

The traditional CLSD model with setup times can be found in [12] and the following parameters
and variables are used to define it:

Parameters:

• T : number of periods (indexed by t );

• J : number of items (indexed by i and j );

• d jt : demand of item j in period t ;

• Ct : available capacity time in period t ;

• a j : consumed capacity time for production of a unit of item j ;

• h j : inventory cost of item j ;

• sci j : setup cost for exchange between items i and j ;

• sti j : setup time for exchange between items i and j ;

Variables:

• I j t : inventory of item j at the end of period t ;

• x jt : produced quantity of item j in period t ;

• V jt : production order of item j in period t ;

• y js : 1, if the item j is the first item produced in period t and 0, otherwise;

• zi js : 1, if there is an exchange between items i and j in period t and 0, otherwise.

Tend. Mat. Apl. Comput., 18, N. 3 (2017)
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The CLSD model is given by (3.1) to (3.10).

Min
J∑

j=1

T∑
t=1

h j I j t +
J∑

i=1

J∑
j=1

T∑
t=1

sci j t zi j t (3.1)

subject to I j,t−1 + x jt = d jt + I j t , ∀t, (3.2)
J∑

j=1

a j x j t +
J∑

i=1

J∑
j=1

sti j zi j t ≤ Ct , ∀t, (3.3)

x jt ≤ Ct

a j

(
y jt +

J∑
i=1

zi j t

)
, ∀ j, t, (3.4)

J∑
j=1

y jt = 1, ∀t, (3.5)

y jt +
J∑

i=1

zi j t =
J∑

i=1

z j it + y j,t+1, ∀ j, (3.6)

V jt ≥ Vit + 1 − J (1 − zi j t ), ∀i, j, t, (3.7)

I j t , V jt , x jt ≥ 0, ∀ j, t, (3.8)

y jt ∈ {0, 1}, ∀ j, t, (3.9)

zi j t ∈ {0, 1}, ∀i, j, t . (3.10)

The objective function (3.1) reflects the sum of holding costs and product changeover costs,
while (3.2) are the inventory balance constraints and (3.3) are the capacity constraints. Con-
straints (3.4) ensure that item j can only be produced if the production line is set up for it.
Constraints (3.5) ensure that only one item is the first produced item in each period, while
constraints (3.6) trace the machine configurations. Constraints (3.7) are MTZ (Miller-Tucker-
Zemlin) constraints to eliminate sub tours and, finally, constraints (3.8) -(3.10) define the domain
of decision variables.

To introduce our branching rule, we firstly define a reformulation of the CLSD model called the
CLSDw model. Consider new binary variables w j t , where w j t = 1, if item j is produced in
period t and w j t = 0, otherwise. Clearly, we have that

w j t = y jt +
J∑

i=1

zi j t , ∀ j, t . (3.11)

Note that, by (3.11) if w j t = 1, then the item j must be scheduled in period t , implying in a
setup cost. Therefore, if x jt = 0 then in the optimal solution we have that w j t = 0.

The CLSDw model can be obtained introducing constraints (3.11) and (3.13) in the CLSD model
and replacing constraints (3.4) by constraints (3.12), where:

x jt ≤ Ct

a j
w j t , ∀ j, t, (3.12)

w j t ∈ {0, 1}, ∀ j, t . (3.13)

Tend. Mat. Apl. Comput., 18, N. 3 (2017)
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3.1 Branching rule

Note that by (3.11), if w j t = 0, then y jt = 0, zi j t = 0 and z j it = 0, ∀i. Therefore, if we can
identify that item j is not produced in one period, we can fix directly the value of 2J + 1 binary
variables on zero.

This fact motivated us to introduce the binary variables w j t in the CLSD model, obtaining the
CLSDw model, and performing a branch-and-bound algorithm with a priority of branching for
these variables. Note that this reformulation increases the number of binary variables in J ∗ T ,
however it enables us to perform a more efficient branching scheme in a branch-and-bound or
branch-and-cut algorithm.

In each search tree node, given an optimal solution of linear relaxation, our branching rule is: if
there are variables w j t with no integer values, we firstly perform the branching in these variables
before variables y jt and zi j t .

Figure 1 presents an example comparing a traditional branch-and-bound algorithm in the CLSD
model and a branch-and-bound algorithm using the CLSDw model with our branching rule. The
instance considered in Figure 1 has 15 products and 5 periods and we notice that with just six
nodes explored, the incumbent dual bound found with our branching rule is significantly bet-
ter than the best dual bound found in a traditional branching scheme. In this test instance, the
traditional branch-and-bound algorithm consumed around 56 seconds to solve the CLSD model
to optimality, while the branch-and-bound algorithm with the branching rule introduced in this
paper consumed only around 6 seconds to solve the CLSDw model.

Figure 1: Representation of our branching rule.

Tend. Mat. Apl. Comput., 18, N. 3 (2017)



�

�

“main” — 2017/12/11 — 14:21 — page 521 — #7
�

�

�

�

�

�

OLIVEIRA and SANTOS 521

We empirically observe that with some values of variables w j t fixed in binary numbers, the value
of linear relaxation for variables y jt and zi j t also tends to be binary. Clearly, if w j t = 0, then
y jt = 0, zi j t = 0 and z j it = 0, ∀i (see (3.11)). Consider now a simplified case where just two
items can be produced in each period and suppose that in a given node, the values of variables
wit and w j t were fixed in one for some i, j and t . Suppose that sti j < st j i and sci j < sc ji .
Therefore, in the optimal solution of the linear relaxation in this node, we will have yit = 1,
y jt = 0, zi j t = 1 and z j it = 0.

Our branching scheme has another advantage. It can be easily implemented using a commer-
cial solver, and therefore, we can benefit from a general powerful branch-and-cut algorithm and
various general heuristics to improve the convergence.

In Section 4, we present computational results to compare the performance of the traditional
CLSD model with the performance of the CLSDw model using our branching scheme imple-
mented in the Cplex 12.60 solver on 240 test instances from the literature.

4 COMPUTATIONAL RESULTS

4.1 Test environment

We implemented the traditional CLSD model, the CLSDw model and our branching rule in
C++ language using the library Concert Technology of the Cplex 12.60 solver. We denote by
CLSDw

B R the results of the model CLSDw using our branching rule in the general Branch-and-
Cut algorithm of the Cplex solver.

We ran the tests on a computer with two Intel Xeon processors, 2.8 GHz and 128 GB DDR3 RAM
memory. The maximum running time was fixed to one hour (3600 seconds). For each instance,
we captured the best feasible solution and the best dual bound found. The deviation of the best

feasible solution from the lower bound (GAP) was computed as G AP = 100 ∗
(

z f −zd

z f

)
, where

z f is the best feasible solution and zd is the incumbent dual bound.

4.2 Test instance features and computational results

To test the performance of model CLSDw with our branching rule, we used a set of 240 test
instances from the literature, and compared it with the performance of traditional CLSD model.
The test instances were presented in [14] and can be obtained in http://www.mang.canterbury.

ac.nz/people/rjames. The test instances have the following features:

1. J ∈ {15, 25}, T ∈ {5, 10, 15};
2. h j ∈ {2, . . . , 9};
3. d jt ∈ {40, . . . , 59};
4. sti j ∈ {5, . . . , 10} and sci j = θsti j , where θ is a positive parameter;

5. a j = 1;

6. Ct =
∑

j d j t

Cut , where 0 < Cut < 1 is a parameter that defines the capacity utilization.

Tend. Mat. Apl. Comput., 18, N. 3 (2017)
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Another parameter Cut V ar was introduced in order to control the amount of capacity variation.

The parameter Cut V ar represents and controls the maximum total allowed variation from Cut ,
and therefore the actual capacity can vary ([14]). The value for Cut V ar was fixed to 0.5 for all
the test instances as in [14].

The test instances were grouped into twenty four classes, with 10 test instances each class, ac-

cording to the value of parameters J , T , Cut , Cut V ar and θ . The values of parameters for each
class and the results are given in Table 1 while the results grouped by number of products (J ),
number of periods (T ) and capacity utilization (Cut ) are presented in Table 2.

Table 1: Test instances features and computational results.

CLSD Our approach
Class J T Cut θ

GAP Time GAP Time

1 15 5 0.6 50 0.00 1.77 0.00 1.58

2 15 5 0.6 100 0.00 3.23 0.00 2.24

3 15 5 0.8 50 0.00 2.25 0.00 1.72

4 15 5 0.8 100 0.00 17.32 0.00 4.78

5 15 10 0.6 50 0.00 16.78 0.00 10.72

6 15 10 0.6 100 0.02 1199.49 0.00 167.24

7 15 10 0.8 50 0.00 53.96 0.00 17.74

8 15 10 0.8 100 0.65 3073.14 0.00 881.05

9 15 15 0.6 50 0.00 1061.70 0.00 38.27

10 15 15 0.6 100 1.12 3600.00 0.60 3600.00

11 15 15 0.8 50 0.03 910.96 0.00 115.94

12 15 15 0.8 100 2.25 3534.61 1.18 3600.00

13 25 5 0.6 50 0.00 16.39 0.00 16.84

14 25 5 0.6 100 0.00 22.88 0.00 17.47

15 25 5 0.8 50 0.00 34.19 0.00 18.43

16 25 5 0.8 100 0.00 569.32 0.00 77.59

17 25 10 0.6 50 0.05 2348.67 0.03 1379.36

18 25 10 0.6 100 2.12 3600.00 0.81 3600.00

19 25 10 0.8 50 0.19 2960.61 0.02 2091.43

20 25 10 0.8 100 2.95 3600.00 1.41 3600.00

21 25 15 0.6 50 0.01 731.67 0.00 495.04

22 25 15 0.6 100 0.72 3481.34 0.13 2811.65

23 25 15 0.8 50 0.01 1143.15 0.01 518.13

24 25 15 0.8 100 1.40 3600.00 0.50 3600.00

Average 0.39 1068.63 0.17 801.77

In Table 1, it can be observed that our approach was able to reduce the average GAP in 12
classes. Moreover, the obtained GAP by our approach does not increase in any class compared
to the traditional approach. The general average GAP was reduced by around 56% (GAPC L S D

Tend. Mat. Apl. Comput., 18, N. 3 (2017)
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Table 2: Results by parameters.

GAP(%) Time (sec) Optimality

CLSD CLSDw
B R CLSD CLSDw

B R CLSD CLSDw
B R

J

15 0.34 0.15 1041.25 703.44 91 100

25 0.62 0.24 1842.35 1518.83 66 76

T

5 0.00 0.00 83.42 17.58 80 80

10 0.75 0.28 2106.58 1468.44 40 54
15 0.69 0.30 2135.40 1847.38 37 42

Cut

0.6 0.34 0.13 1258.64 1011.70 84 91

0.8 0.62 0.26 1624.96 1210.57 73 85

= 0.39 and GAPCL S Dw
B R

= 0.17), while the general average time was reduced by around 24%
(TimeCL S D = 1068.63 and TimeCL S Dw

B R
= 801.77).

The average time was reduced by 19 classes, remaining constant in 4 classes and increased in

only one class (class 12). The increase is due to an instance from class 12 the random access
memory limit (128 GB) was exceeded before reaching the time limit by the traditional CLSD
model, and therefore, the running time was slightly reduced. The largest reduction in the average

time occurred in classes 6, 11 and 16 where our approach reduces the mean running time by
around 86%. In Table 2, it can be observed that our approach could prove optimality in 176 test
instances while the traditional approach could prove optimality in 157 test instances.

Table 2 shows that when the number of products or periods increased, then the problem becomes

more difficult to solve resulting in longer average deviations and running times, as well as a
reduction in the number of instances considering optimality. This fact is not impressive, because
the branch-and-cut algorithm grows exponentially when the number of decisions is increased.

Table 3 presents the number of nodes explored in the search and the number of iterations (in-

cluding the cuts applied). We can observe that using our branching rule, the average number of
nodes explored was reduced by around 39%, while the average number of iterations was reduced
by around 6.9%.

The number of iterations performed in the CLSDw
B R approach was greater than in CLSD ap-

proach for classes 10, 12, 14, 18, 19, 20, 22 and 24. In theses classes (except for Class 14),
there are instances in which the optimal solution was not found because there are residual GAPs.
For this reason, the maximum running time was reached for some instances. Therefore, in the

same running time, the CLSDw
B R approach can perform a greater number of iterations than CLSD

approach.

Tend. Mat. Apl. Comput., 18, N. 3 (2017)
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The number of nodes explored in the CLSDw
B R approach was greater than CLSD approach for

classes 13, 17, 19 and 21 and it was smaller for the other classes. Considering only the classes
in which all instances were solved to optimality, the number of nodes explored in the CLSDw

B R
approach was around 76% smaller than the number of nodes explored in the CLSD approach.

Considering the classes with residual GAPs, the number of nodes explored in the CLSDw
B R

approach was around 11% smaller than CLSD approach.

Table 3: Number of nodes and iterations performed.

Number of nodes explored Number of iterations performed
Class

CLSD CLSDw
B R CLSD CLSDw

B R
1 1541 671 50134 24784

2 5324 4151 172363 169440
3 3842 1400 130092 49398

4 36452 8769 1224504 420539

5 21534 14202 913286 552771
6 1426276 202249 100289584 15004754

7 76071 25676 3970066 998653
8 3719591 978368 187900007 92400732

9 123995 47022 8097885 2112733
10 2339063 1915179 162079035 204888190

11 1031393 151758 67064913 9687699
12 2138835 1733453 125684903 202960893

13 26452 37367 859010 846972
14 16540 11259 695352 709076

15 47227 27330 1496080 678274
16 1426276 92446 37124290 5811404

17 765350 802356 52081996 34160326

18 504313 397020 42277202 58011746
19 857055 1209576 52552985 58049001

20 482558 441854 45284620 61073639
21 368987 382150 17561192 15858221

22 1193224 727726 77532729 110469561
23 547339 523243 31833302 22167379

24 1060625 963640 80127545 117803858

Average 729807 442590 45381429.2 42221972.49

4.3 Impact of the proposed branching rule

In this section we present some results to try to identify the impact of the branching rule proposed

considering the results obtained in Section 4.2. Table 4 presents results with the aim of comparing
the performance of the model with the branching rule (CLSDw

B R) and without the rule (CLSDw).

Tend. Mat. Apl. Comput., 18, N. 3 (2017)
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Table 4: Studing the impact of the proposed branching rule.

Experiment I: Experiment II:
traditional Branch-and-Cut algorithm default settings of the Cplex solver

Class
GAP running time GAP running time

CLSDw CLSDw
B R CLSDw CLSDw

B R CLSDw CLSDw
B R CLSDw CLSDw

B R
1 0 0 1.40 1.16 0 0 1.73 1.58
2 0 0 2.33 2 0 0 2.20 2.24
3 0 0 1.88 1.32 0 0 1.82 1.72
4 0 0 6.09 3.43 0 0 7.10 4.78
5 0 0 37.40 35.40 0 0 16.58 10.72
6 0.42 0.16 1889.95 1611.01 0 0 286.41 167.24
7 0 0 102.07 68.65 0 0 26.36 17.74
8 1.37 0.99 3335.19 3220.64 0 0 770.33 881.05
9 0.02 0.07 881.03 1201.12 0 0 63.45 38.27
10 3.18 2.66 3600 3600 0.73 0.60 3600 3600
11 0.19 0.15 1800.97 1288.20 0 0 220.34 115.94
12 5.96 3.61 3600 3600 1.23 1.18 3600 3600
13 0 0 67.37 37.19 0 0 17.53 16.84
14 0 0 27.37 16.41 0 0 18.54 17.47
15 0 0 64.85 26.12 0 0 22.03 18.43
16 0 0 304.24 136.2 0 0 108.07 77.59
17 0.80 (1) 0.22 3503.21 3600 0.03 0.03 1752.35 1379.36
18 8.53 (1) 2.39 3600 3600 0.99 0.81 3600 3600
19 2.00 (2) 0.54 3600 3450.55 0.04 0.02 2233.86 2091.43
20 7.42 (1) 3.24 3600 3600 1.42 1.41 3600 3600
21 0.09 0.07 2152.58 1668.59 0 0 628.62 495.04
22 2.66 1.07 3408.49 3343.67 0.23 0.13 2894.97 2811.65
23 0.18 (1) 0.07 2468.21 1612.57 0 0.01 700.08 518.13
24 2.43 1.56 3574.67 3600 0.47 0.50 3600 3600

Average 1.43 0.70 1779.76 1640.08 0.22 0.19 1157.18 1111.13

The Cplex solver (using default settings) triggers heuristics to identify the nodes that must be

explored first, i.e., the Cplex solver can infer branching rules by exploring the structure of the
CLSDw model. In this way, with the aim of better understanding the impact of the branching
rule, we performed Experiment I turning off all existing heuristics and presolve techniques in the

Cplex solver obtaining a traditional Branch-and-Cut algorithm.

We can observe in the results from Experiment I shown in Table 4 that the use of the branching
rule causes a reduction in the general average GAP of around 51% (GAPC L S Dw = 1.43 and
GAPCL S Dw

B R
= 0.70) and a reduction in the average running time of around 7.80% (TIMEC L S Dw

= 1779.76 and TIMECL S Dw
B R

= 1640.08).

Using our branching rule, the average GAP was reduced for 13 classes and increased only for
one class (class 9). Considering only the instances of classes where all instances were solved
to optimality (classes 1 to 5, 7 and 13 to 16), the average running time was reduced for all

classes and the average running time using our branching rule for these instances was around 317
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seconds, while without the rule, the average running time was around 347 seconds. Therefore,

our approach reduces the time needed to solve these instances to optimality by around 8.8%.

We also observe that, without the branching rule, no feasible solutions were found for 6 instances,
while using the rule, feasible solutions were found for all test instances. The number of instances
that the CLSDw approach could not find a feasible solution is given in parenthesis in the GAP

column of Experiment I in Table 4.

In Classes 17 and 24, the running time for CLSDw was less than that for CLSDw
B R , because the

RAM memory limit was exceeded before the timeout expired for some instances in the CLSDw

model without our branching rule.

Experiment II was performed using default settings of the Cplex solver with the aim of to identify

the impact of our branching rule when heuristics are used (in the background) to determine the
nodes to be explored. We can observe in Table 4 that the use of our branching rule causes a re-
duction of approximately 10% in the average GAP (GAPCL S Dw = 0.22 and GAPC L S Dw

B R
= 0.19)

and a reduction in the average running time (TIMECL S Dw = 1157.18 seconds and TIMECL S Dw
B R

= 1111.13 seconds) of around 4%.

It can be observed that, considering only the instances in which the optimal solution was found
(from classes 1 to 9, 11, 13 to 16, 21 and 23) in Experiment II, the average running time without

the branching rule is 192 seconds and, using the rule, this time is 158 seconds. Therefore, the time
needed to solve these instances to optimality was reduced by around 17% when our branching
rule was used.

Experiments I and II showed that our branching rule causes a positive impact in the computational

performance of the CLSDw model. This impact is more evident when a traditional Branch-and-
Cut algorithm is used. However, even using heuristics to determine the nodes that are explored
(default settings of the Cplex solver), making our branching rule explicit can significantly accel-

erate the computational convergence of the Branch-and-Cut algorithm.

5 CONCLUSIONS AND FUTURE STUDIES

In this paper, we deal with the lot sizing and scheduling problem with sequence dependent

setup costs and times. We proposed a simple reformulation for the CLSD model originating
the CLSDw model. The CLSDw model consists of explicitly specifying the binary variables (w)
to indicate if an item is produced in one period or not. This formulation allowed us to define a
new branching rule to improve the performance of branch-and-bound algorithms. Our branching

rule consists of firstly performing the branching in variables w before the other binary variables.
We implemented the CLSDw model and our branching rule in the Cplex 12.60 solver, tested
the performance of our approach in 240 test instances from the literature and compared them

with the performance of the traditional CLSD model. The computational results show that our
approach can significantly reduce the running time and the average GAP.
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The branching rule proposed in this paper can improve the performance of algorithms that need to

partially solve the CLSD model in each iteration, such as the mixed integer programming based
heuristics and Lagrangian based heuristics. As future studies, we highlight the investigation of
these approaches using the CLSDw model with the branching rule proposed in this paper.
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APPENDIX: COMPUTATIONAL IMPLEMENTATION

According to the Cplex User’s Manual, in the search, Cplex makes decisions about which vari-
able to branch on at a node and the user can control the order in which Cplex branches on vari-

ables by issuing a priority order. Cplex performs branches on variables with a higher assigned
priority number before variables with a lower priority number.

From Concert Technology, the user can set priority for variables using the method setPriority.
By default, the variables not assigned an explicit priority value by the user are treated as having

a priority value of zero. In this way, our branching rule can be implemented setting a higher
priority for variables w j t , ∀ j, t, than the other binary variables. In this paper, we set a priority of
2 for all variables w j t and use the default value (0) for all variables y jt and zi j t .

We provide the complete code in C++ language including the implementation of the models and

the branching rule on the website http://conteudo.icmc.usp.br/pessoas/mari/
Pesquisas.htm.

RESUMO. Neste artigo tratamos do desafiador problema integrado de dimensionamento de

lotes e sequenciamento da produção na existência de tempos e custos de preparação para

produção dependentes da sequência. Mais especificamente, nossa atenção é fixada no mo-

delo CLSD, proposto em [13]. Propõe-se, neste trabalho, uma reformulação para o modelo

CLSD (intitulada CLSDw), bem como, uma nova regra de branching para ser utilizada em

algoritmos do tipo Branch-and-Bound para solução do modelo CLSDw. Por meio de testes

computacionais realizados com base em instâncias da literatura, foi possı́vel observar que a

abordagem de solução proposta neste artigo é bastante promissora, uma vez que proporcionou

significante redução no tempo computacional para solução problema, elevada redução no

desvio médio (GAP) entre a melhor solução e o melhor limitante dual conhecidos e uma

significante elevação no número de instâncias resolvidas até a otimalidade quando comparado

com a abordagem tradicional.

Palavras-chave: Dimensionamento e sequenciamento de lotes, Programação matemática

inteira mista, Algoritmo Branch-and-Bound.
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[12] L. Guimarães, D. Klabjan & B. Almada-Lobo. Modeling lotsizing and scheduling problems with

sequence dependent setups. European Journal of Operational Research, 239(3) (2014), 644–662.

[13] K. Haase. Capacitated lot-sizing with sequence dependent setup costs. Operations-Research-

Spektrum, 18(1) (1996), 51–59.

[14] R.J.W. James & B. Almada-Lobo. Single and parallel machine capacitated lotsizing and schedul-
ing: New iterative MIP-based neighborhood search heuristics. Computers & Operations Research,

38 (2011), 1816–1825.

[15] G.M. Kopanos, L. Puigjaner & C.T. Maravelias. Production planning and scheduling of parallel con-

tinuous processes with product families. Industrial & engineering chemistry research, 50(3) (2010),
1369–1378.

[16] H. Meyr. Simultaneous lotsizing and scheduling by combining local search with dual reoptimization.
European Journal of Operational Research, 120(2) (2000), 311–326.

[17] H. Meyr. Simultaneous lotsizing and scheduling on parallel machines. European Journal of Opera-

tional Research, 139(2) (2002), 277–292.

[18] H. Meyr & M. Mann. A decomposition approach for the General Lotsizing and Scheduling Problem
for Parallel production Lines. European Journal of Operational Research, 229(3) (2013), 718–731.

Tend. Mat. Apl. Comput., 18, N. 3 (2017)



�

�

“main” — 2017/12/11 — 14:21 — page 529 — #15
�

�

�

�

�

�

OLIVEIRA and SANTOS 529

[19] W. Wei et al. Tactical production and distribution planning with dependency issues on the production

process. Omega, 67 (2017), 99–114.

[20] L.A. Wolsey. MIP modelling of changeovers in production planning and scheduling problems. Euro-

pean Journal of Operational Research, 99(1) (1997), 154–165.

[21] J. Xiao et al. A hybrid Lagrangian-simulated annealing-based heuristic for the parallel-machine
capacitated lot-sizing and scheduling problem with sequence-dependent setup times. Computers &

Operations Research, 63 (2015), 72–82.
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