
Submetido para TEMA

A new branching rule to solve the Capacitated Lot
Sizing and Scheduling Problem with sequence

dependent setups

Abstract. In this paper, we deal with the Capacitated Lot Sizing and Schedul-
ing Problem with sequence dependent setup times and costs - CLSD model. More
specifically, we propose a simple reformulation for the CLSD model that enables
us to define a new branching rule to be used in Branch-and-Bound (or Branch-
and-Cut) algorithms to solve this NP-hard problem. Our branching rule can be
easily implemented in commercial solvers. Computational tests performed in 240
test instances from the literature show that our approach can significantly reduce
the running time to solve this problem using a Branch-and-Cut algorithm of a com-
mercial MIP solver. Therefore, our approach can also improve the performance of
other approaches that need to solve partial sub problems of the CLSD model in each
iteration, such as Lagrangian approaches and heuristics based on the mathematical
formulation of the problem.

Keywords. Lot Sizing, Scheduling, Mixed Integer Linear Programming, Branch-
and-Bound Algorithm.

1. Introduction

In most production environments, companies need to decide on the size of pro-
duction lots in order to obtain efficient inventory management and reduce costs.
High inventory levels cause high holding costs and low inventory levels may cause
undesirable delays in meeting customer demands.

The lot sizing problem (LP) consists of determining the optimal size of produc-
tion lots with the aim to minimize costs and meet customer demands. The LP
has received special attention from researchers due to its importance for the global
economy ([10]).

On the other hand, the scheduling problem consists of determining the sequence
of production lots in order to minimize the time and cost generated by product
changeovers on production lines. When the cost and time generated by product
changeovers depends on previously produced items and the item to be produced, it
can be said that there is a sequence-dependent setup time and/or cost structure.

According to [1], when there is a sequence-dependent setup time/cost structure,
the decisions about the size of production lots and the sequence of production



2

need to be taken simultaneously, because the solution obtained by an hierarchical
approach may be infeasible or suboptimal. Therefore, the simultaneous lot sizing
and scheduling problem (LSP) consists of simultaneously deciding the sizes and
production sequences.

In the literature, there are various mathematical models to deal with LSP. We
highlight the capacitated lot sizing and scheduling with sequence dependent setups
- CLSD model ([13]), the general lot sizing and scheduling problem - GLSP model
([9], [16]) and the reformulation of GLSP model proposed in [5] - CC model. Recent
reviews of the models to deal with LSP are presented in [12, 1, 6].

In [12], the authors compare various mathematical models for LSP and by using
theoretical and computational results, it could be concluded that the CLSD model
is a promising formulation to deal with LSP. The CLSD model has an interesting
performance in exact solution approaches such as Brand-and-Bound algorithms from
commercial MIP solvers.

In this paper, we introduce a very simple reformulation for the CLSD model
(the CLSDw model) that allows us to introduce a new branching rule able to signif-
icantly improve the computational performance of this model in Branch-and-Bound
(Branch-and-Cut) algorithms. Therefore, our approach can be used to improve the
performance of commercial solvers and approaches to deal with LSP that need to
solve partial sub problems, such as Lagrangian approaches and MIP based heuris-
tics.

We use a set of 240 test instances from the literature to compare the performance
of the traditional CLSD with our approach in a commercial powerful solver Cplex
12.60. Computational results show that our approach can significantly improve
the performance of the solver Cplex, reducing running time and proving optimality
for more test instances. This paper is organized as follows: Section 2 presents a
literature review for LSP; Section 3 presents the mathematical formulation CLSDw

and the branching rule and Section 4 presents the computational results comparing
the performance of the traditional CLSD model with our approach in the Branch-
and-Cut algorithm from Cplex 12.60. Finally, the conclusions and future proposals
are presented in Section 5.

2. Literature review

[9] introduced the GLSP model to deal with LSP. The GLSP model considered
several items to be produced on a single machine (production line) with dynamic
deterministic demand and sequence-dependent setup costs and no setup times. This
model is based on the idea that consists of splitting to split each period into several
micro periods (with varying sizes) where only one item can be produced. Therefore,
by determining which items will be produced in each micro period, the production
lot schedules can then be automatically determined.

The original GLSP model was reformulated in [20] using a network flow problem
structure and in [5] suppressed the setup state variables in the model. Computa-
tional tests performed in [12] showed that both reformulations can provide better



Simultaneous Lot Sizing and Scheduling Problem 3

dual bounds by solving linear relaxation than the dual bounds obtained by solving
the linear relaxation of the GLSP model .

In [13], the CLSD model was introduced using another strategy, consisting of
introducing constraints and variables from the travelling salesman problem to map
the start time and end time of production of each item in each period, to model
the sequencing decisions. The CLSD model considers, originally, a single-stage
system where several items have to be produced on a single machine in a finite
planning horizon supposing a known dynamic deterministic demand which must be
completely satisfied without backlogging.

Mixed integer programming models based on the CLSD model have been pro-
posed to deal with problems from various real world production environments, such
as [15], which addressed a yogurt industry and [21], which studied a semiconductor
assembly and test manufacturing.

In other papers, extensions of the GLSP model were compared with the ex-
tension of the CLSD model to deal with different real problems. For example, [2]
addressed the LSP on parallel production lines that need to be equipped with tools
for processing. Models inspired by GLSP and CLSD were developed to synchronize
these tools on the production lines. Computational tests showed that the CLSD
model has a much better performance than the GLSP model considering the runtime
and the ability to find feasible solutions.

Computational tests in [12] showed that the CLSD model performs better than
all the models that use micro period structures. In particular, the CLSD model pre-
sented a lower average deviation from the best known solution (GAP) and running
time than other models.

The LSP is a NP-complete problem ([9, 16, 17]) where instances based on real
world problems can be difficult to solve by exact algorithms at an acceptable com-
putational time. Therefore, various heuristic approaches have been developed to
deal with the LSP. For example, [13] proposed a backward oriented heuristic to
solve the LSP model without setup times, while [17] proposed a threshold accepting
methaheuristic to deal with LSP considering sequence dependent setup times.

Heuristics based on the mathematical formulation of the problem (MIP based
heuristics) have been frequently used to solve the LSP, in particular, the relax-and-
fix - RF and fix-and-optimise - FO. FO heuristics have obtained good solutions for
various types of lot sizing and scheduling problems and various heuristics approaches
combining RF and FO heuristics have been proposed in the literature, such as
[3, 7, 8, 22, 19].

In the simplified case, the RF heuristic split the set of all binary variables (B)
of the model in a finite number of small subsets (Br ⊂ B, r = 1, . . . , R) and, in
each iteration r ∈ {1, . . . , R}, the binary variables in the sets Bk with k < r have
their values fixed in the incumbent value (obtained from the previous iterations),
while the binary variables in the sets Bl with l > k are linearly relaxed and just
the binary variables in the set Br are optimized. Usually, RF heuristics are used to
obtain an initial solution.

The FO is an improvement heuristic that starts in any feasible solution and in
each iteration a subset of binary variables are re-optimized while the other binary



4

variables have their values fixed on the value of the incumbent solution. For lot
sizing and scheduling problems, the most used variable partitions are by periods,
products and production lines. FO heuristics can also be used with an exact method
(matheuristics). For example, [11] combined FO with column generation and [4]
integrated FO with the Variable Neighbourhood Search - VNS methaheuristic.

Therefore, as MIP based heuristics solve, in each iteration, a small mixed integer
linear programming model, these heuristics can be improved if a good model and a
good exact solution algorithm are used to solve the sub problems in each iteration.
Therefore, the reformulation and the branch rule proposed in this paper can improve
the computational performance of some MIP based heuristics to deal with LSP.

3. Model formulation and solution approach

The traditional CLSD model with setup times can be found in [12] and the following
parameters and variables are used to define it:

Parameters:

• T : number of periods (indexed by t);

• J : number of items (indexed by i and j);

• djt: demand of item j in period t;

• Ct: available capacity time in period t;

• aj : consumed capacity time for production of a unit of item j;

• hj : inventory cost of item j;

• scij : setup cost for exchange between items i and j;

• stij : setup time for exchange between items i and j;

Variables:

• Ijt: inventory of item j at the end of period t;

• xjt: produced quantity of item j in period t;

• Vjt: production order of item j in period t;

• yjs: 1, if the item j is the first item produced in period t and 0, otherwise;

• zijs: 1, if there is an exchange between items i and j in period t and 0,
otherwise.



Simultaneous Lot Sizing and Scheduling Problem 5

The CLSD model is given by (3.1) to (3.9).

Min
J∑

j=1

T∑
t=1

hjIjt +

J∑
i=1

J∑
j=1

T∑
t=1

scijtzijt (3.1)

subject to
J∑

j=1

ajxjt +

J∑
i=1

J∑
j=1

stijzijt ≤ Ct, ∀t, (3.2)

xjt ≤
Ct

aj

(
yjt +

J∑
i=1

zijt

)
, ∀j, t, (3.3)

J∑
j=1

yjt = 1, ∀t, (3.4)

yjt +

J∑
i=1

zijt =

J∑
i=1

zjit + yj,t+1, ∀j, (3.5)

Vjt ≥ Vit + 1− J(1− zijt), ∀i, j, t, (3.6)
Ijt, Vjt, xjt ≥ 0, ∀j, t, (3.7)
yjt ∈ {0, 1}, ∀j, t, (3.8)
zijt ∈ {0, 1}, ∀i, j, t. (3.9)

The objective function (3.1) reflects the sum of holding costs and product
changeover costs, while (3.2) are the capacity constraints and constraints (3.3)
ensure that item j can only be produced if the production line is set up for it.
Constraints (3.4) ensure that only one item is the first produced item in each pe-
riod, while constraints (3.5) trace the machine configurations. Constraints (3.6) are
MTZ (Miller-Tucker-Zemlin) constraints to eliminate sub tours and, finally, con-
straints (3.7) - (3.9) define the domain of decision variables.

To introduce our branching rule, we firstly define a reformulation of the CLSD
model called the CLSDw model. Consider new binary variables wjt to indicate if
item j is produced in period t (wjt = 1) or not (wjt = 0). Clearly, we have that

wjt = yjt +

J∑
i=1

zijt, ∀j, t. (3.10)

The CLSDw model can be obtained introducing constraints (3.10) and (3.12)
and replacing constraints (3.3) by constraints (3.11), where:

xjt ≤
Ct

aj
wjt, ∀j, t, (3.11)

wjt ∈ {0, 1}, ∀j, t. (3.12)



6

3.1. Branching rule

Note that by (3.10), if item j is not produced in period t, i.e, wjt = 0, then yjt = 0,
zijt = 0 and zjit = 0, ∀i. Therefore, if we can identify that item j is not produced
in one period, we can fix directly the value of 2J + 1 binary variables on zero.

This fact motivated us to introduce the binary variables wjt in the CLSD model,
obtaining the CLSDw model, and performing a branch-and-bound algorithm with
a priority of branching for these variables. Note that this reformulation increases
the number of binary variables in J ∗ T , however it enables us to perform a more
efficient branching scheme in a branch-and-bound or branch-and-cut algorithm.

In each search tree node, given an optimal solution of linear relaxation, our
branching rule is: if there are variables wjt with no integer values, we firstly perform
the branching in these variables before variables yjt and zijt.

Figure 1 presents an example comparing a traditional branch-and-bound al-
gorithm in the CLSD model and a branch-and-bound algorithm using the CLSDw

model with our branching rule. The instance considered in Figure 1 has 15 products
and 5 periods and we notice that with just six nodes explored, the best dual bound
found with our branching rule is significantly better than the best dual bound found
in a traditional branching scheme. In this test instance, the traditional branch-and-
bound algorithm consumed around 56 seconds to solve the CLSD model to opti-
mality, while the branch-and-bound algorithm with the branching rule introduced
in this paper consumed only around 6 seconds to solve the CLSDw model.

We can observe that with some values of variables wjt fixed in binary numbers,
the value of linear relaxation for variables yjt and zijt also tends to be binary. For
example, consider a simplified case where just two items can be produced in each
period and suppose that in a given node, the values of variables wit and wjt were
fixed in one for some i, j and t. Suppose that stij < stji and scij < scji. Therefore,
in the optimal solution of the linear relaxation in this node, we will have yit = 1,
yjt = 0, zijt = 1 and zjit = 0.

Our branching scheme has another advantage. It can be easily implemented
using a commercial solver, and therefore, we can benefit from a general powerful
branch-and-cut algorithm and various general heuristics to improve the convergence.

In Section 4, we present computational results to compare the performance of
the traditional CLSD model with the performance of the CLSDw model using our
branching scheme implemented in the Cplex 12.60 solver on 240 test instances from
the literature.

4. Computational results

4.1. Test environment

We implemented the traditional CLSD model and the CLSDw model in C++ lan-
guage using the library Concert Technology of the Cplex 12.60 solver. Except for
our branching rule for the CLSDw model, we use the default setting of the Cplex
12.60.



Simultaneous Lot Sizing and Scheduling Problem 7

Figure 1: Representation of branching rule.

We ran the tests on a computer with two Intel Xeon processors, 2.8 GHz and
128 GB DDR3 RAM memory. The maximum running time was fixed to one hour.
For each instance, we captured the best feasible solution and the best dual bound
found. The deviation of the best feasible solution from the lower bound (GAP) was
computed as GAP = 100 ∗

(
zf−zd

zf

)
, where zf is the best feasible solution and zd

is the best dual bound found.

4.2. Test instance features and computational results

To test the performance of model CLSDw with our branching rule, we used a set
of 240 test instances from the literature, and compared it with the performance
of traditional CLSD model. The test instances were presented in [14] and can be
obtained in http://www.mang.canterbury.ac.nz/people/rjames. The test instances
have the following features:

1. J ∈ {15, 25}, T ∈ {5, 10, 15};

2. hj ∈ {2, . . . , 9};

3. djt ∈ {40, . . . , 59};



8

4. stij ∈ {5, . . . , 10} and scij = θstij , where θ is a positive parameter;

5. aj = 1;

6. Ct =

∑
j djt

Cut
, where 0 < Cut < 1 is a parameter that defines the capacity

utilization.

Another parameter CutV ar was introduced in order to control the amount of
capacity variation. The parameter CutV ar represents and controls the maximum
total allowed variation from Cut, and therefore the actual capacity can vary ([14]).
The value for CutV ar was fixed to 0.5 for all the test instances as in [14].

The test instances were grouped into twenty four classes, with 10 test instances
each class, according to the value of parameters J , T , Cut, CutV ar and θ. The
values of parameters for each class and the results are given in Table 1 while the
results grouped by number of products (J), number of periods (T ) and capacity
utilization (Cut) are presented in Table 2.

In Table 1, it can be observed that our approach was able to reduce the av-
erage GAP in 12 classes. Moreover, the obtained GAP by our approach does not
increase in any class compared to the traditional approach. The general average
GAP was reduced by around 56% (GAPCLSD = 0.39 and GAPCLSDw = 0.17),
while the general average time was reduced by around 24% (TimeCLSD = 1068.63
and TimeCLSDw = 801.77).

The average time was reduced by 19 classes, remaining constant in 4 classes and
increased in only one class (class 12). The increase is due to an instance from class
12 the random access memory limit (128 GB) was exceeded before reaching the time
limit by the traditional CLSD model, and therefore, the running time was slightly
reduced. The largest reduction in the average time occurred in classes 6, 11 and
16 where our approach reduces the mean running time by around 86%. In Table 2,
it can be observed that our approach could prove optimality in 176 test instances
while the traditional approach could prove optimality in 157 test instances.

Table 2 shows that when the number of products or periods increased, then
the problem becomes more difficult to solve resulting in longer average deviations
and running times, as well as a reduction in the number of instances considering
optimality. This fact is not impressive, because the branch-and-cut algorithm grows
exponentially when the number of decisions is increased.

Finally, in the Figure 2 we present a general comparison between the CLSD
model and the CLSDw model solved by the branch-and-cut algorithm of the Cplex
solver. The x-axis represents the average GAP (in percentage) obtained from the
240 test instances and the y-axis represents the average running time (in seconds).
Therefore, the closer to the origin, the more promising the solution’s approach.
It can be observed that the approach proposed in this paper improved the GAP
(x-axis) and the running time (y-axis).



Simultaneous Lot Sizing and Scheduling Problem 9

Table 1: Test instances features and computational results.

CLSD Our approach
Class J T Cut θ GAP Time GAP Time
1 15 5 0.6 50 0.00 1.77 0.00 1.58
2 15 5 0.6 100 0.00 3.23 0.00 2.24
3 15 5 0.8 50 0.00 2.25 0.00 1.72
4 15 5 0.8 100 0.00 17.32 0.00 4.78
5 15 10 0.6 50 0.00 16.78 0.00 10.72
6 15 10 0.6 100 0.02 1199.49 0.00 167.24
7 15 10 0.8 50 0.00 53.96 0.00 17.74
8 15 10 0.8 100 0.65 3073.14 0.00 881.05
9 15 15 0.6 50 0.00 1061.70 0.00 38.27
10 15 15 0.6 100 1.12 3600.00 0.60 3600.00
11 15 15 0.8 50 0.03 910.96 0.00 115.94
12 15 15 0.8 100 2.25 3534.61 1.18 3600.00
13 25 5 0.6 50 0.00 16.39 0.00 16.84
14 25 5 0.6 100 0.00 22.88 0.00 17.47
15 25 5 0.8 50 0.00 34.19 0.00 18.43
16 25 5 0.8 100 0.00 569.32 0.00 77.59
17 25 10 0.6 50 0.05 2348.67 0.03 1379.36
18 25 10 0.6 100 2.12 3600.00 0.81 3600.00
19 25 10 0.8 50 0.19 2960.61 0.02 2091.43
20 25 10 0.8 100 2.95 3600.00 1.41 3600.00
21 25 15 0.6 50 0.01 731.67 0.00 495.04
22 25 15 0.6 100 0.72 3481.34 0.13 2811.65
23 25 15 0.8 50 0.01 1143.15 0.01 518.13
24 25 15 0.8 100 1.40 3600.00 0.50 3600.00

Average 0.39 1068.63 0.17 801.77

Figure 2: Comparing CLSD and CLSDw model with branching rule introduced in
this paper.

5. Conclusions and future studies
In this paper, we deal with the lot sizing and scheduling problem with sequence
dependent setup costs and times. We proposed a simple reformulation for the



10

Table 2: Results by parameters.

GAP Time Optimality
CLSD CLSDw CLSD CLSDw CLSD CLSDw

J
15 0.34 0.15 1041.25 703.44 91 100
25 0.62 0.24 1842.35 1518.83 66 76

T
5 0.00 0.00 83.42 17.58 80 80
10 0.75 0.28 2106.58 1468.44 40 54
15 0.69 0.30 2135.40 1847.38 37 42

Cut
0.6 0.34 0.13 1258.64 1011.70 84 91
0.8 0.62 0.26 1624.96 1210.57 73 85

CLSDmodel originating the CLSDw model. The CLSDw model consists of explicitly
specifying the binary variables (w) to indicate if an item is produced in one period
or not. This formulation allowed us to define a new branching rule to improve the
performance of branch-and-bound algorithms. Our branching rule consists of firstly
performing the branching in variables w before the other binary variables. We
implemented the CLSDw model and our branching rule in the Cplex 12.60 solver,
tested the performance of our approach in 240 test instances from the literature
and compared them with the performance of the traditional CLSD model. The
computational results show that our approach can significantly reduce the running
time and the average GAP.

The branching rule proposed in this paper can improve the performance of al-
gorithms that need to partially solve the CLSD model in each iteration, such as the
mixed integer programming based heuristics and Lagrangian based heuristics. As
future studies, we highlight the investigation of these approaches using the CLSDw

model.

Acknowledgements The authors would like to thank the following funding
agencies for the financial support: Conselho Nacional de Desenvolvimento Científico
e Tecnológico (CNPq), and Fundação de Amparo Pesquisa do Estado de São Paulo
(FAPESP) via CEPID No. 2013/07375-0.

Resumo. Neste artigo tratamos do desafiador problema integrado de dimensiona-
mento de lotes e sequenciamento da produção na existência de tempos e custos de
preparação para produção dependentes da sequência. Mais especificamente, nossa
atenção é fixada no modelo CLSD, proposto em [13]. Propõe-se, neste trabalho,
uma reformulação para o modelo CLSD (intitulada CLSDw), bem como, uma nova
regra de branching para ser utilizada em algoritmos do tipo Branch-and-Bound
para solução do modelo CLSDw. Por meio de testes computacionais realizados com
base em instâncias da literatura, foi possível observar que a abordagem de solução
proposta neste artigo é bastante promissora, uma vez que proporcionou significante



Simultaneous Lot Sizing and Scheduling Problem 11

redução no tempo computacional para solução problema, elevada redução no desvio
médio (GAP) entre a melhor solução e o melhor limitante dual conhecidos e uma
significante elevação no número de instâncias resolvidas até a otimalidade quando
comparado com a abordagem tradicional.

References
[1] B. Almada-Lobo, et al. “Industrial insights into lot sizing and scheduling mod-

eling”. Pesquisa Operacional, 2015.

[2] C. Almeder and B. Almada-Lobo. “Synchronisation of scarce resources for a par-
allel machine lotsizing problem”. International Journal of Production Research,
v. 49, n. 24, p. 7315-7335, 2011.

[3] S. A. de Araujo, M. N. Arenales and A. R. Clark. “Lot sizing and furnace
scheduling in small foundries”. Computers & Operations Research , 35.3: 916-
932, 2008.

[4] H. Chen. “Fix-and-optimize and variable neighborhood search approaches for
multi-level capacitated lot sizing problems”. Omega, 2015.

[5] A. R. Clark and S. J. Clark. “Rolling-horizon lot-sizing when set-up times
are sequence-dependent”. International Journal of Production Research, 38.10:
2287-2307, 2000.

[6] K. Copil, et al. “Simultaneous lotsizing and scheduling problems: a classification
and review of models”. OR Spectrum, 2016.

[7] D. Ferreira, R. Morabito, and Socorro Rangel. “Solution approaches for the
soft drink integrated production lot sizing and scheduling problem”. European
Journal of Operational Research, 196.2: 697-706, 2009.

[8] D. Ferreira, R. Morabito, and Socorro Rangel. “Relax and fix heuristics to solve
one-stage one-machine lot-scheduling models for small-scale soft drink plants”.
Computers & Operations Research , 37.4: 684-691, 2010.

[9] B. Fleischmann and H. Meyr. “The general lotsizing and scheduling problem”.
Operations-Research-Spektrum, v. 19, n. 1, p. 11-21, 1997.

[10] C. H. Glock, E. H. Grosse, and J. M. Ries. “The lot sizing problem: A tertiary
study”. International Journal of Production Economics, 155: 39-51, 2014.

[11] L. Guimaraes, D. Klabjan, and B. Almada-Lobo. “Pricing, relaxing and fixing
under lot sizing and scheduling”. European Journal of Operational Research,
230.2: 399-411, 2013.

[12] L. Guimarães, D. Klabjan, and B. Almada-Lobo. “Modeling lotsizing and
scheduling problems with sequence dependent setups”. European Journal of Op-
erational Research, v. 239, n. 3, p. 644-662, 2014.



12

[13] K. Haase. “Capacitated lot-sizing with sequence dependent setup costs”.
Operations-Research-Spektrum, 18.1: 51-59, 1996.

[14] R. J. W. James and B. Almada-Lobo. “Single and parallel machine capaci-
tated lotsizing and scheduling: New iterative MIP-based neighborhood search
heuristics”. Computers & Operations Research, 38.12: 1816-1825, 2011.

[15] G. M. Kopanos, L. Puigjaner and C. T. Maravelias. “Production planning and
scheduling of parallel continuous processes with product families”. Industrial &
engineering chemistry research, 50.3: 1369-1378, 2010.

[16] H. Meyr. “Simultaneous lotsizing and scheduling by combining local search with
dual reoptimization”. European Journal of Operational Research, v. 120, n. 2, p.
311-326, 2000.

[17] H. Meyr. “Simultaneous lotsizing and scheduling on parallel machines”. Euro-
pean Journal of Operational Research, v. 139, n. 2, p. 277-292, 2002.

[18] H. Meyr and M. Mann. “A decomposition approach for the General Lotsizing
and Scheduling Problem for Parallel production Lines”. European Journal of
Operational Research, v. 229, n. 3, p. 718-731, 2013.

[19] W. Wei, et al. “Tactical production and distribution planning with dependency
issues on the production process”. Omega, 2016.

[20] L. A. Wolsey. “MIP modelling of changeovers in production planning and
scheduling problems”. European Journal of Operational Research, v. 99, n. 1,
p. 154-165, 1997.

[21] J. Xiao, et al. “A hybrid Lagrangian-simulated annealing-based heuristic for the
parallel-machine capacitated lot-sizing and scheduling problem with sequence-
dependent setup times”. Computers & Operations Research, 63: 72-82, 2015.

[22] S. Çağrı and B. Bilgen. “Hybrid simulation and MIP based heuristic algorithm
for the production and distribution planning in the soft drink industry”. Journal
of Manufacturing Systems 33.3: 385-399, 2014.


