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ABSTRACT. The Reverse Cuthill-McKee (RCM) algorithm is a well-known heuristic for reordering sparse
matrices. It is typically used to speed up the computation of sparse linear systems of equations. This paper
describes two parallel approaches for the RCM algorithm as well as an optimized version of each one based
on some proposed enhancements. The first one exploits a strategy for reducing lazy threads, while the
second one makes use of a static bucket array as the main data structure and suppress some steps performed
by the original algorithm. These related changes led to outstanding reordering time results and significant
bandwidth reductions. The performance of two algorithms is compared with the respective implementation
made available by Boost library. The OpenMP framework is used for supporting the parallelism and both
versions of the algorithm are tested with large sparse and structural symmetric matrices.

Keywords: parallel RCM, bandwidth reduction, sparse matrices.

1 INTRODUCTION

Computation involving sparse matrices have been of widespread use since the 1950s, and its

application includes electrical networks and power distribution, structural engineering, reactor
diffusion, and, in general, solutions to partial differential equations [29]. The typical way to
solve such equations is to discretize them, i.e., to approximate them by equations that involve
a finite number of unknowns. The linear systems that arise from these discretizations are of the

type Ax = b, in which A is a large and sparse matrix, that is, it has very few nonzero entries. In
this context, a matrix with a small bandwidth is useful in direct methods for solving sparse linear
systems since it allows a simple data structure to be used. It is also useful in iterative methods

because the nonzero elements will be clustered close to the diagonal, thereby enhancing data
locality. Given a symmetric matrix A, a bandwidth-reduction ordering aims to find a permutation
P so that the bandwidth of P APT is small. The bandwidth of a matrix A denoted by β(A) is

defined as the greatest distance from the first nonzero element to the diagonal, considering all
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rows of the matrix [29]. More formally, for the i-th row of A, i = 1, 2, . . . , n, let fi (A) =
min{ j | ai j �= 0}, and bi (A) = i − fi (A). So, β(A) = max

i=2,3,...,n
{bi (A)}.

Since Papadimitrou [23] proved that the bandwidth minimization problem is NP-complete, sev-

eral heuristic algorithms have been presented in the literature aiming to find good quality so-
lutions as fast as possible. An important class of these algorithms treats a matrix bandwidth
reduction under the perspective of a graph labeling problem. In this way, reordering a sparse

matrix is considered a problem of labeling the vertices of the corresponding graph in such way
that closest labels are assigned to most linked vertices.

In this paper, the parallel Unordered and Leveled implementations of the RCM algorithm pro-
posed by [16] are presented. In the first one, the underlying matrix graph is completely processed

in one step, followed by the permutation vector generation. On the other hand, in the second one,
the graph traversing and the vector computation take place iteratively level-by-level. The original
implementation of these algorithms is based on the Galois system1. However, as the OpenMP2

framework has widely been used in researches related to shared-memory parallel systems, this
work analyses the results obtained by an OpenMP implementation of these algorithms. Further-
more, an optimized version of each one is introduced. Actually, the set of proposed optimiza-

tions leads to outstanding improvements on the performance of the algorithms. In the Unordered
RCM, a strategy to reduce lazy threads is evaluated. On the other hand, the Leveled RCM is
presented with an alternative main data structure – a static Bucket Array [3] – in replacement of

FIFO queue [2] proposed originally. Relevant CPU time improvements were observed by means
of this change.

The outline of the paper is as follow. In the next section, an overview of the serial RCM is
presented. Section 3 is dedicated to description of the Unordered RCM algorithm as well as

some proposed optimizations. In Section 4, the Leveled RCM algorithm is presented along with
an optimized version of it. All tests and achieved results are described in Section 5. Conclusions
and future works are addressed in Section 6.

2 SERIAL REVERSE CUTHILL-MCKEE

The serial Cuthill-McKee algorithm [8] is based on a Breadth-First-Search (BFS) strategy, in
which the graph is traversed by level sets3. As soon as a level set is traversed, its nodes are
marked and numbered. The neighbors of each of these nodes are then inspected. Each time a

neighbor of a visited vertex that is not numbered is encountered, it is added to a list and labeled
as the next element of the next level set. The order in which each level itself is traversed gives
rise to different orderings or permutations of rows and columns. In the Cuthill-McKee ordering,

the nodes adjacent to a visited node are always traversed from the lowest to the highest degree.

1Galois is a system that automatically executes serial C++ or Java code in parallel on shared-memory machines [10].
2OpenMP is a specification for a set of compiler directives, library routines, and environment variables that can be used
to specify high-level parallelism in Fortran and C/C++ programs [22]

3A level set structure of a graph is defined recursively as the set of all unmarked neighbors of all nodes of a previous level
set. Initially, a level set consists of one node.

Tend. Mat. Apl. Comput., 18, N. 3 (2017)
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However, in 1971, the Reverse Cuthill-McKee algorithm was presented by [20]. It was empiri-

cally observed that reversing the Cuthill-McKee ordering yields a better permutation scheme for
matrix reordering problems. Algorithm 1 presents the pseudo-code of serial RCM.

Algorithm 1 Serial Reverse Cuthill-McKee Algorithm
1: v1 = r; // root node
2: for (i = 1 to n) {
3: Find all unlabelled neighbors of the vertex vi

4: Label the vertices found in increasing order of degree

5: }
6: Reverse the order as w1, w2, . . . , wn where wi = vn−i+1 for i = 1, . . . , n.

The root r of the level structure is usually chosen from the pseudo-peripheral4 nodes of the
associated graph. In this work, the parallel pseudo-peripheral node finding algorithm presented

by [30] was implemented and used for obtaining the root vertex required by RCM.

3 UNORDERED PARALLEL REVERSE CUTHILL-MCKEE

The first RCM parallelization suggested by [16] is composed of four main steps. Based on this,
the overall skeleton of the Unordered Parallel RCM is not iterative, that is, there is no a global

loop wherewith the algorithm traverses the graph gradually. Instead, the four steps are executed
just once and the permutation array is yielded as final output. These related steps are detailed as
follow.

Step 1: Generate a level structure through the Unordered BFS algorithm. The Unordered

BFS algorithm relies on the perception of local minimums in the graph regarding the levels of the
adjacent nodes. More precisely, the level of every node (excepting the root) may be computed
as the highest level among the respective neighbors added of one [11]. In this way, the level

computation for a node n may be described as a fixpoint system5:
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Initialization:
level(root) = 0; level(k) = ∞, ∀k other than root;
Fixed Point Iteration:
level(n) = min(level(m) + 1), ∀m ∈ neighbors of n.

Algorithm 2 shows the pseudo-code of the implemented Unordered BFS and the respective op-

timizations suggested by this work. In order to explore the fixed point feature, an unordered
worklist (wl) structure must by maintained by the algorithm. A structure of this type makes pos-
sible any node to be picked up. Thereafter, the algorithm is able to processing several nodes in

4A pseudo-peripheral node is one of the pairs of vertices that have approximately the greatest distance from each other in
the graph (the graph distance between two nodes is the number of edges on the shortest path between nodes).

5A fixed point iteration x(k+1) := f (x(k) ) yields a decreasing (increasing) monotonic sequence which converges to a
fixed point x∗ such that f ( f (. . . f (x∗) . . .)) = f n (x∗) = x∗ [26].

Tend. Mat. Apl. Comput., 18, N. 3 (2017)
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parallel. Nevertheless, as threads access the worklist in a non-deterministic way, a node may be

eventually set with a level higher than the correct final value. Despite this, the successive itera-
tions executed by threads over the worklist generate a monotonic decrement of the level of each
processed nodes. This decrement stabilizes at the appropriated node level (fixed point iteration).

This process is exemplified by Figure 1. Initially at step (i), three nodes have already been in-

spected by the algorithm. The root r is the first node processed (black background) by a thread,
and its respective neighbors are active (gray background) in the worklist. The level of them has
been defined as the level of the parent (zero) added of one. At this moment, both nodes (a and

b) may be taken by a thread. Eventually, in the step (ii), the node b was selected and processed
by a thread. Consequently, its unprocessed neighbors (just the node c) were selected and became
actives in the worklist. Next, two nodes are available to be processed: a (from the previous step)

and c (from the current step). As there is no a specific order to process the nodes, anyone may be
taken. In this case, the node c was selected and its not processed neighbor (node d) become active
with the level defined as three. Finally, at step (iii), just the node a remains in the worlist. So, it

is taken by a thread, and the level of its not processed neighbor (node d) is set to the appropriated
value, i.e., two.

d:∞ c:∞

a:1 b:1

r:0

d:3 c:2

a:1 b:1

r:0

d:2 c:2

a:1 b:1

r:0

(i) (ii) (iii)

Figure 1: Fixed Point Iteration Example.

Two optimizations previously presented by [11] were incorporated into the Unordered BFS
(Algorithm 2).

1. Work chunking: In order to minimize the access to the global worklist ws by threads,

it was adopted the strategy of making each thread able to dequeue a bunch of nodes
(WORK CHUNK) from the worklist rather than only one at a time (lines 6-10). As each
thread caches a local worklist threadws (a subset of ws), they can process it indepen-

dently of each other. Thus, a local set of new actived nodes (relaxedws) is built by the
running threads, and finally, each relaxedws is merged into the global worklist (lines 20-
22). The size of the bunch of nodes picked up by each thread is dynamically defined in

the algorithm. Actually, empirical test points out to a better algorithm performance when
considering the WORK CHUNK size as fifty percent of the total of nodes available in the
global worklist [24].

Tend. Mat. Apl. Comput., 18, N. 3 (2017)
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Algorithm 2 Optimized Unordered BFS Algorithm
1: Graph G = input(); // Read in graph
2: Worklist ws;
3: ws.add(root);

4: while (not ws.isEmpty()) {
5: // Work Chunking
6: Worklist threadws;

7: foreach (Node n: ws) { // Atomic access to ws
8: if (threadws.size() > WORK CHUNK) break;

9: threadws.add(n);

10: }
11: // Fixed Point Iteration
12: Worklist relaxedws;
13: foreach (Node n: threadws) {
14: foreach (Node v: G.neighbors(n)) {
15: int level = n.getLevel() + 1;
16: if (level > v.getLevel()) {
17: v.setLevel(level);
18: relaxedws.add(v);

19: } } }
20: // Relaxing nodes
21: foreach (Node m: relaxedws) {
22: atomic ws.add(m);

23: } } } }

2. Wasted work reduction: It was implemented a strategy to reduce the time wasted by each

waiting thread (idle threads) in which all threads remove active elements from one end of
the worklist and add to the other. The concurrent access of each worklist end is managed
by two distinct access lock. Naturally, this approach relaxes the strict order in which the
worklist is processed. However, to ensure this strict order increases the access time of the

worklist beyond the benefit of reducing the amount of wasted work.

These two related optimizations were earlier explored in the work [24]. But the comparison of

the parallel Unordered RCM was made against a correspondent serial algorithm implemented
by [13].

Step 2: Count nodes by level. Initially, all nodes of the graph are divided among the set of
threads. Each thread counts locally how many nodes, from its respective subset of nodes, belong

to each level. Moreover, a local maximum level is determined by each thread. Next, the global
maximum level is computed through the comparison of each maximum local level of each thread.
Finally, as the number of levels of the graph is already computed, thus a range of levels is assigned

Tend. Mat. Apl. Comput., 18, N. 3 (2017)
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to each thread that, in turn, counts how many nodes were computed by all threads in its respective

range. The result is stored in the global array.

Step 3: Compute the prefix sum of levels. The prefix sum 6 calculus implemented in this work

is based on the algorithm proposed by [1]. Initially, each thread computes the prefix sums of the
n
p elements it has locally. The total number of elements (n) corresponds to the maximum level
accounted for by the previous step of the Unordered RCM algorithm. The value p is related to the

number of threads. Hereafter, the last prefix sum of each thread is assigned to arrays responsible
for guiding the data exchanging process among the threads. In fact, the local prefix sum values
are exchanged and each thread accumulates the respective received value. The rule to determine a

pair of threads that is going to communicate is through a XOR (exclusive OR) bitwise operation
between the unique identifier of the sender thread and a constant related to the group of the
receiver thread. Finally, each thread merges the result from the accumulated prefix sums with

each local prefix sum initially computed.

Step 4: Build the permutation array. The underlying concept behind the operation of this

phase is the pipelining of threads actions among the levels of the graph. For this, one thread
is assigned for each level, and the communication among them takes place in pairs: a thread
responsible for a level l plays a producer (writer) role, while a thread assigned to the level l + 1
acts as a data consumer (reader). Every read/write operation happens over the permutation array.

The controller of this implemented producer/consumer paradigm is done through the prefix sum
array (sums) generated in the previous step. Actually, it is never changed once its values are used
as bounds for threads operations. In this way, this pipeline makes possible the construction of the

permutation array in a parallel way: while a thread writes the children nodes from a level l in the
permutation array, another thread reads these ones in order to write the corresponding neighbors
of them at level l + 1 in the permutation array.

4 LEVELED PARALLEL REVERSE CUTHILL-MCKEE

The second parallelization of RCM presented by [16] makes use of a different approach. There is
no an unordered execution of threads through the graph as a whole. Instead, the graph is traversed

level by level, and the parallelism is restricted to one level per time. In each level-iteration, the
permutation array is built gradually. The step-by-step executed by the Leveled RCM is detailed
in Algorithm 3.

Iterations are composed of four steps carried out inside the outermost parallel loop (line 3).

Initially, threads explore the neighbors of the parent nodes previously stored in the permutation
array (lines 6-16). This expansion step sets the appropriated level of each explored neighbor. In
the two next steps, the number of children (neighbors) per level is accounted (reduction step –

lines 18-20), and the prefix sum is generated subsequently (lines 22-24). Finally, the neighbors
processed in the current iteration are stored in the permutation array (placement step).

6The prefix sum operation takes a binary associative operator ⊕, and an ordered set of n elements [a0, a1, . . . , an−1] and
returns the ordered set [a0, (a0 ⊕ a1), . . . , (a0 ⊕ a1 ⊕ . . . ⊕ an−1)].

Tend. Mat. Apl. Comput., 18, N. 3 (2017)
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Algorithm 3 Leveled RCM
1: Graph G = input(); // Read in graph

2: P[0] = source;
3: while (P.size < G.size)
4: // Expansion
5: List generation;

6: foreach (Node parent: P[parent1:parentN]) {
7: for (Node nb: parent.neighbors) {
8: if (nb.level > parent.level) {
9: if (nb.level > parent.level + 1) {

10: // Atomic check
11: atomic nb.level = parent.level + 1;

12: generation.push(child);

13: }
14: if (parent.order < child.parent.order)

15: atomic child.parent = parent;

16: } } }
17: // Reduction

18: foreach (Node child: generation) {
19: atomic child.parent.chnum++;

20: }
21: // Prefix Sum

22: foreach (int threads: thread) {
23: Prefix sum of parent.chnum into parent.index

24: }
25: // Placement

26: foreach (Node child: generation) {
27: atomic index = child.parent.index++;
28: P[index] = child;

29: if (child == child.parent.lastChild)
30: sort(P[children1:childrenM]);

31: } }

4.1 Optimized Leveled Parallel RCM

The proposed new version of the Leveled Parallel RCM follows the same strategy of the original
one. It is based on a graph traversing level-by-level and the parallelism is restricted to each level.

However, an alternative main data structure is used in order to conduct the nodes processing
iteratively [25]. Actually, during each iteration, the processing relies on a Bucket Array in which
inspected nodes are stored in specific buckets or cells. In order to determine the correct bucket for

Tend. Mat. Apl. Comput., 18, N. 3 (2017)
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storing a node, it is used a hashing function. As this type of function may generate a same output

for distinct inputs, each bucket array position is able to enqueue nodes. Figure 2 presents an
operating scheme of the bucket array implemented for the optimized Leveled RCM. Furthermore,
the use of the Bucket Array as main data structure produces an important impact on the design of

the new proposed algorithm. In effect, the number of steps of the original algorithm were merged
into just two. The algorithm idea is presented in Algorithm 4.

Figure 2: Bucket Array with hash function h(x) = x mod 5.

Algorithm 4 Optimized Leveled RCM
1: Graph G = input(); // Read in graph
2: P[0] = source;
3: while (P.size < G.size)
4: // Expansion

5: BucketArray generation;
6: foreach (Node parent: P[parent1:parentN]) {
7: for (Node nb: parent.neighbors) {
8: if (nb.level > parent.level) {
9: if (nb.level > parent.level + 1) {

10: // Atomic check

11: atomic nb.level = parent.level + 1;
12: if (nb.status == UNLABELED) {
13: nb.status = LABELED;

14: generation[hash(parent)].push(nb);

15: } } } } }
16: // Placement

17: foreach (Vector children: generation[bucket1:bucketN].children) {
18: atomic index = P.size + permOffSet;
19: atomic permOffSet += children.size;

20: sort(children);
21: foreach (Node child: children)
22: P[index++] = child;

23: } }

Tend. Mat. Apl. Comput., 18, N. 3 (2017)
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The algorithm starts setting a pseudo-peripheral node (source node) at the first position of the

permutation array. Hereafter, the parallel processing comes into play inside the outermost loop
(line 3). Every iteration is composed of two steps. In the first one, all nodes to be processed are
read from the permutation array (P), and the respective children of each node are inspected. A

global range (parent1:parentN – line 6) is kept in order to control the parents to be processed in
each iteration. Thus, the appropriated level is set to every U N L AB E L E D child (line 11), the
status of each one is updated to L AB E L E D (line 13), and they are stored in the correct positions

in the bucket array generat ion (line 14). Two features related to the use of a bucket array in this
step are ever relevant for the algorithm performance:

• Implicit reduction step. As each processed child node is stored in the bucket of its respec-
tive parent, the number of children per parent becomes automatically available through a

simple node counter. It is incremented at each bucket insertion. Thus, there is no necessity
of a separated step (reduction) for to execute this computation, as is done by the original
algorithm.

• Cheap hashing function. Each cell or bucket of the main data structure corresponds to

a parent node of some inspected node in the current iteration. So, the hashing function
employed in mapping nodes to buckets involves just a memory address computation. In
order words, to find out the correct position of a node in the bucket array is related to the

cost of one memory access.

After all threads conclude the building bucket array process by means of the parent nodes inspec-
tion, they advance to the second iteration step. In this phase, each thread takes a bucket and stored
the children mapped to it in the final permutation array (lines 21-22). This way of traversing the

processed nodes, i.e. bucket-by-bucket instead of node-by-node, represents an important im-
provement for the performance of the algorithm. In effect, this strategy makes possible threads
execute all placement work independently of each other. This because only two synchronized

operations (lines 18 and 19) are necessary. Both of them are related to updating the range of the
permutation array to be made available for the next iteration. In contrast, the original algorithm
guides the threads work through the prefix sum computed in a previous step. This specific step is

not necessary in the bucket-by-bucket computation proposed by the optimized algorithm.

All aforementioned modifications implemented in the original algorithm were early evaluated
in a previous work [25]. However, the comparison was made against a free OpenMP-based im-
plementation of the original algorithm. The evaluation shown that the Leveled RCM speedup is

critically compromised by a straightforward replication of it to the OpenMP platform.

5 EXPERIMENTAL RESULTS

The performance evaluation of the Optimized Leveled and the Optimized Unordered RCM al-
gorithms was against a serial implementation of RCM made available by the Boost Library [28].
A set of twenty structural symmetric and square matrices was selected from the University of

Tend. Mat. Apl. Comput., 18, N. 3 (2017)
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Florida Sparse Matrix Collection [9]. These matrices cover multiple type of problems in order to

increase the dataset variety and the percentage of sparsity of each one is higher than 99.97%. The
set of tested matrices is shown in Table 1. The columns present matrices and some characteristics
of them: dimension, number of non-zeros, and average of non-zeros per row (NNZ/row). The

program was coded in the C language and the parallelism was supported by OpenMP frame-
work. The experiments were performed on a PC running Ubuntu Linux, version 14.04.5 LTS,
with Kernel version 3.19.0-25. It consists of 2 Xeon processors of 8 cores each, operating at 2.4

GHz. Each core has a unified 256KB L2 cache and each processor has a shared 20MB L3 cache.
The PC contains 32GB of main memory and code was compiled with GNU gcc version 4.8.4.
The complete source code is available on GitHub repository [31].

Table 1: Sparse Tested Matrices.

Matrix Dimension Non-zeros NNZ/row

benzene 8,219 242,669 30

FEM 3D thermal1 17,880 430,740 24

rail 79841 79,841 553,921 7

thermomech TC 102,158 711,558 7

Dubcova3 146,689 3,636,643 25

Ga41As41H72 268,096 18,488,476 69

F1 343,791 26,837,113 78

helm2d03 392,257 2,741,935 7

msdoor 415,863 19,173,163 46

inline 1 503,712 36,816,170 73

gsm 106857 589,446 21,758,924 37

Fault 639 638,802 27,245,944 43

tmt sym 726,713 5,080,961 7

tmt unsym 917,825 4,584,801 5

audikw 1 943,695 77,651,847 82

nlpkkt80 1,062,400 28,192,672 27

dielFilterV3real 1,102,824 89,306,020 81

dielFilterV2real 1,157,456 48,538,952 42

Serena 1,391,349 64,131,971 46

G3 circuit 1,585,478 7,660,826 5

Tables 2 and 3 show a quality and performance comparison, respectively, among the serial Boost

Library implementation of RCM and the two modified parallel versions of the algorithm, Un-
ordered and Leveled, which have been proposed in this work. The algorithms were performed
five times for each pair (mi , t j ), where mi is a matrix of Table 1, and t j is the number of threads

between 1 and 12 (in steps of 2) used by each algorithm. For each (mi , t j) tested pair, the av-
erage was calculated from the reported values. In order to compare both algorithms, for each
matrix mi , it was selected the number of threads t j that reached the best time reordering for

Tend. Mat. Apl. Comput., 18, N. 3 (2017)
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the Unordered algorithm. This same number of threads t j was used to select the corresponding

(mi , t j) tested pair from the Leveled algorithm. Moreover, the Compressed Sparse Row format
was the mechanism used to store each tested matrix. The operations applied on them were also
performed using this format.

5.1 Reordering Quality

Table 2 shows the new bandwidth obtained after applying the permutation generated by each al-
gorithm. In the column Bandwidth the original bandwith of the matrices is presented. The same
band reordering values were reached by the three implementations for five of tested matrices.

The Boost library overcomes both parallel algorithms only for three matrices: Ga41As41H72,
audikw 1, and diel FilterV 2real. For the remaining matrices, both proposed algorithms at-
tained the smallest values for the bandwidth. In particular, only for the Serena matrix, the al-

gorithms reached a less expressive reordering result around 0.17%. Five matrices achieved an
intermediate reduction rate (up to 56.04%): Fault 639, Ga41As41H72, tmt sym benzene,
and tmt unsym. With the other matrices, the percentage of reduction various between 95.60%

(nlpkkt80) until 99.75% (helm2d03).

Table 2: Reordering Quality Comparison.

Matrix Bandwidth After Permutation

Name Bandwidth Boost Unordered Leveled

benzene 2,898 1,699 1,699 1,699

FEM 3D thermal1 13,787 636 635 635

rail 79841 79,811 418 418 418

thermomech TC 102,138 262 262 262

Dubcova3 146,356 2,130 1,942 2,268

Ga41As41H72 40,195 32,974 33,112 33,016

F1 343,754 10,052 10,052 10,052

helm2d03 391,403 994 994 994

msdoor 291,114 6,032 5,823 5,970

inline 1 502,403 6,002 6,002 6,002

gsm 106857 588,744 17,865 17,742 17,742

Fault 639 19,988 17,892 17,028 16,324

tmt sym 1,921 1,140 1,139 1,139

tmt unsym 2,161 942 942 942

audikw 1 925,946 35,084 35,102 35,102

nlpkkt80 550,481 32,726 35,258 28,243

dielFilterV3real 1,036,475 23,691 23,652 23,633

dielFilterV2real 948,032 17,999 18,045 18,045

Serena 81,578 81,673 81,438 81,438

G3 circuit 947,128 5,068 5,068 5,068
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(A) helm2d03 (B) thermomech TC (C) rail 79841 (D) G3 circuit (E) inline 1

Figure 3: Sparse matrix pattern yielded by the Unordered RCM.

A strict comparison between the two proposed algorithms emphasizes the efficiency of both ap-
proaches in sense of quality reordering. Both of them reached the best bandwidth value with
twelve matrices. But, for two matrices (Dubcova3 and msdoor), only the Unordered RCM at-

tained the best reduction values. On the other hand, the Leveled RCM generates the best permu-
tation for three other ones: Fault 639, nlpkkt80, and diel FilterV 3real. The presented values
of bandwith reduction highlight the efficiency of all approaches in sense of quality reordering.

The quality reordering may also be graphically attested through Figure 3. It shows the five ma-

trices with best bandwidth reduction rate reached by the algorithms. The first row of each group
presents the matrix sparsity before reordering. In the below rows, each respective matrix is exhib-
ited as result of a permutation of rows and columns derived from the Unordered RCM algorithm.

Actually, the reordering pattern reached by any one of the three tested algorithms might be used
to depicts the quality of applied permutation. This because the differences among the bandwith
reduction reached by each one is less than 0.002% and may be negligible.

5.2 Reordering Performance

Table 3 shows the elapsed time (Time columns) by the algorithms, in scale of 10−3 seconds, to
reorder each matrix considering the best set of threads (column #Th.). Other additional columns
(Reduction) present the time reduction percentage reached by the respective parallel algorithm.

The pseudo-peripheral vertex used as source node by the three evaluated algorithms is obtained
through the algorithm mentioned in Section 2. Because this, the time spent in each pseudo-
peripheral computation was not included in this performance analysis. As showed by the Table 3,

for all tested instances both proposed algorithms attained better performance than Boost library.
In fact, the Unordered RCM decreased the time reordering in two order of magnitude for twelve
tested matrices. For other seven matrices, there was one order of magnitude in the time reduction.

The Leveled RCM also presented an outstanding efficiency for the set of matrices.

Tend. Mat. Apl. Comput., 18, N. 3 (2017)
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Table 3: Performance Comparison. URCM: Unordered RCM, LRCM: Leveled RCM.

Matrix #Th.
Time (x10−3 sec.) Reduction (%)

Boost URCM LRCM URCM LRCM

benzene 2 1.782 0.096 0.132 94.16 92.59

FEM 3D thermal1 6 1.961 0.095 0.260 95.16 86.74

rail 79841 2 2.720 0.788 0.542 71.03 80.07

thermomech TC 4 3.818 0.483 1.093 87.35 71.37

Dubcova3 10 16.593 0.951 1.926 94.27 88.39

Ga41As41H72 6 85.534 1.641 11.054 98.08 87.08

F1 6 120.952 2.319 8.591 98.08 92.90

helm2d03 2 13.858 1.585 1.498 88.56 89.19

msdoor 4 89.861 2.402 6.323 97.33 92.96

inline 1 8 164.875 4.374 13.725 97.35 91.68

gsm 106857 8 103.744 3.689 10.543 96.44 89.84

Fault 639 8 128.757 4.173 11.758 96.76 90.87

tmt sym 2 25.636 3.412 3.775 86.70 85.27

tmt unsym 2 24.53 4.41 3.832 82.02 84.38

audikw 1 6 348.895 8.489 43.130 97.57 87.64

nlpkkt80 4 139.195 5.903 15.35 95.76 88.97

dielFilterV3real 8 404.739 9.611 53.626 97.63 86.75

dielFilterV2real 6 231.527 7.405 19.924 96.80 91.39

Serena 6 294.792 7.038 40.062 97.61 86.41

G3 circuit 2 40.042 12.080 8.923 69.83 77.72

A direct performance comparison between the two parallel approaches points out the superior
efficiency of the Unordered algorithm. Indeed, the best times were reached by the Unordered
RCM for sixteen tested matrices. On the other hand, the Leveled RCM obtained the best values

for another subset of four instances. The time reduction percentage reached by the Unordered
algorithm various between 69.83% (G3 circuit ) and 98.08% (F1). Analogously, the reduction
ratio obtained by the Leveled RCM was from 71.37% (thermomech T C) to 92.96% (msdoor).

Figure 4 presents how speedups of the Unordered RCM scale as the number of threads is in-

creased. Five matrices with the highest rate of speedup were selected. As shown by this figure,
audikw 1 and diel FilterV 3real are the matrices with best speedups of this group. It is relevant
to notice the related matrices are able to scale until 12 threads, and the maximum speedup ratio

reached by each one was 4.48X and 4.07X respectively. The speedup ratio reached by the other
three matrices was of 3.06X (Ga41As41H72), 3.02X (F1), and 2.46X (msdoor). An important
feature to point out about these five matrices is the large number of nonzeros per row of each
one (approximately an average of 71 NNZ/row – for details see Table 1). Therefore, speedups

of parallel algorithms like Unordered RCM which are based on a BFS approach are higher for
graphs with a larger number of edges per node.
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Figure 4: Speedup of Smallest Matrices.

Another feature is related to the no significant speedup observed for the Leveled RCM. As it
uses a different general strategy based on a parallelism by level [16], a barrier must be placed

between each level. Because of this, increasing the number of threads do not necessarily lead to
an improvement of performance.

6 CONCLUSIONS AND FUTURE WORKS

This paper analysed two parallel strategies for the traditional Reverse Cuthill-McKee reordering

algorithm. Two modified implementations were presented and the results achieved by both al-
gorithms represent a significant improvement on the reordering time. With the Unordered RCM
algorithm, it reached a time reduction of until 98.08% of the serial time obtained by the Boost

library. Other significant results show the Unordered RCM achieving speedups until 4.478 with
12 threads. A relevant performance was also achieved by the Leveled RCM algorithm. The
permutations generated by it reduced the bandwidth until 99.75%. It is noticeable the changes

proposed for the two parallel algorithms led to outstanding performance enhancements. About
the reordering quality, both implementations attained relevant bandwidth reduction. Therefore,
the two modified parallel RCM algorithms may be considered as efficient approaches for the

bandwidth minimization problem.
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Both parallel implementations of the RCM presented in this work were supported by the OpenMP

framework. However, some works have addressed the reordering problem through the use of an-
other kind of parallelism tool. As example, [7] has developed a parallel tool for graph partition-
ing, and several works have discussed the parallelization of algorithms by the Galois System [11].

Moreover, other data structures and BFS strategies have been proposed for the parallelism of
RCM. In fact, Hassam et al. [11] present relevant results from a wavefront BFS implementa-
tion, and Leiserson and Schardl [18] propose a novel implementation of a workset data structure,

called “bag”, in place of FIFO queue usually employed in BFS algorithms. The use of these new
structures and strategies might promotes more improvements to the algorithms studied in this
work. Moreover, additional comparisons against other mathematical libraries may ever endorse

the relevant performance reached by the algorithms. In this way, a confrontation with the Har-
well Subroutine Library (HSL) [12] – a collection of state-of-the-art packages for large-scale
scientific computation – constitutes an important complementary test to be made.

RESUMO. O algoritmo Reverse Cuthil-McKee (RCM) constitui uma heurı́stica bem con-

hecida para o reordenamento de matrizes esparsas. Ele é tipicamente aplicado para a me-

lhoria do desempenho da computação de sistemas lineares de equações. Este artigo descreve

duas abordagens paralelas propostas para o algoritmo Reverse Cuthill-McKee, assim como

versões otimizadas baseadas em alguns aprimoramentos propostos. Na primeira abordagem

há a exploração de uma estratégia para a redução de threads ociosas, enquanto a segunda

abordagem faz uso de um bucket array estático como estrutura de dados principal, além de

suprimir algumas etapas do algoritmo original. As modificações apresentadas conduzem a re-

sultados relevantes tanto em termos do tempo de reordenamento quanto na redução da largura

de banda. O desempenhode cada algoritmo é comparado com a sua respectiva implementação

disponibilizada pela biblioteca Boost. O paralelismo é suportado pelo framework OpenMP e

ambas as versões do algoritmo são testadas com matrizes esparsas de grande porte e estrutu-

ralmente simétricas.

Palavras-chave: RCM paralelo, redução de largura de banda, matrizes esparsas.
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