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ABSTRACT. In this paper, a three-dimensional solution of the steady-state advection-diffusion equation
is obtained applying the so-called generalized integral advection-diffusion multilayer technique, consid-
ered non-local closure for turbulent flow. Two different parametrizations were considered for the counter-
gradient coefficient and three different methods of numerical inversion for inverse Laplace transform. The
results were compared with the experimental data of Copenhagen experiment by an evaluation of statisti-
cal indexes to analyze the solution of the equation through the methods of numerical inversion. Different
parametrizations for the vertical turbulent eddy diffusivity and wind profile were utilized. The results show a
good agreement with the experiment and the methods of numerical inversion for inverse Laplace transform
show almost the same accuracy.

Keywords: Non-local closure, numerical inversion, pollutant dispersion.

1 INTRODUCTION

In the framework of pollutant dispersion modeling in the low atmosphere, Reynolds decomposi-
tion applied to the equation resulting from the law of conservation of mass leads to an equation
exhibiting the so-called closure problem. In particular, it is necessary to provide constitutive
relations linking pollutant concentration to the turbulent fluxes in the atmosphere. The tradi-
tional approach is based on the K-theory, or gradient-transport theory, which states, in analogy to
molecular diffusion, that the fluxes are proportional to the gradient of the mean pollutant concen-
tration, providing the so-called local Fickian closure [32]. However, such an approach does not
take into account the non-homogeneous character of turbulence in the planetary boundary layer
(PBL), which occurs when convective movements are dominant. In fact, K-theory is known to
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44 ADVECTION-DIFFUSION EQUATION WITH NON-LOCAL CLOSURE

fail in the presence of large-size eddies in the upper portion of the PBL, even though it has been
commonly used in models that attempt to describe neutral-to-unstable atmospheric conditions
[32]. Moreover, the derivation of the K-theory based on Prandtl’s mixing-length theory [26] is
valid only for statically neutral situations [32]. Various approaches were developed to overcome
such a situation. For instance, the nonlocal theories of spectral diffusivity [3] and transilient tur-
bulence [31], which, although supported by some experimental evidence, produce results that
differ from those of the statistical dispersion theory [32]. An alternative consist of considering
the so-called nonlocal closure representing the counter-gradient fluxes to indicate the presence of
scale eddies or nonlocal fluxes in the PBL [10, 11, 12]. In this context, one approach considers
a Taylor expansion of the turbulent fluxes in the vertical direction [33, 35]. Here, we consider a
linear closure for the counter-gradient term which is consistent with various experiment-based
parametrizations of the counter-gradient fluxes [9, 10, 11, 12, 27].

From the methodological point of view, the boundary/initial-value problems for advection-
diffusion equations with variable coefficients that model pollutant dispersion in the atmosphere
are usually solved via integral transform-based methods [5, 6, 19, 20, 21, 34]. Among those meth-
ods, the advection-diffusion multilayer method (ADMM) [19, 20] provides accurate analytical
solutions. In fact, it was reported that the ADMM produces estimations of pollutant concentra-
tions which are as accurate as other integral transform-based methods such as the generalized
integral Laplace transform technique (GILTT) [21, 34] but with remarkably less computational
cost [22]. This last feature is essential in real-life situations such as industrial/natural disasters
which require swift (ideally real-time) and accurate estimations of the ground-level distribution
and concentration of the pollutants escaped to the atmosphere.

The ADMM is based on the stepwise approximation of the continuous wind velocity profile and
eddy diffusivity coefficients in the vertical direction. Such an approximation is the local aver-
age of the variable coefficients over each sublayer. Then, the original problem with continuous
coefficients is approximated by a problem with piecewise-constant coefficients and interlayer
continuity conditions. The approximate problem is then analytically solved in the Laplace space,
and the approximation of the solution of the original problem is obtained by applying the inverse
Laplace transform to the analytical solution of the approximate problem in the Laplace space.
For further details, see [20].

On the other hand, the GILTT relies on the Fourier method to produce an truncated eigenfunc-
tion series expansion of the solution. As usual, the eigenfunctions are obtained from the related
Sturm-Liouville problem resulting via separation of variables. The coefficients of the series so-
lution are obtained by solving an auxiliary problem for a matrix ordinary differential equation
via the Laplace transform. This problem is obtained by using the orthogonality property of the
eigenfunctions. Finally, the inverse Laplace transform is applied to this approximate solution in
the Laplace space in order to obtain the approximation of the solution of the original problem.
For further details, see [21].

Here, we use the generalized integral advection-diffusion multilayer technique (GIADMT) to
solve a steady-state three-dimensional advection-diffusion model with nonlocal counter-gradient
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closure. In particular, the GIADMT applies the GILTT in the crosswind lateral direction to the
approximate problem resulting from the application of the ADMM. The resulting multilayer
problem for the coefficients of the eigenfunction series expansion of the approximate solution
is then solved in the Laplace space. Again, the approximation of the solution of the original
problem follows by applying the inverse Laplace transform. For further details, see [6, 7].

As the solutions in the Laplace space provided by the three aforementioned methods are very
complex, it is usually necessary to take a computational approach to the inversion of the Laplace
transform. In models adopting the Fickian closure, we observed [28] that, when the solution is
sought via the ADMM, the fixed-Talbot inversion algorithm [1] provides more accurate results
than the Gaussian quadrature approach [30] and than a Fourier series-based method [8]. However,
to the best of our knowledge, in models adopting non-Fickian closures, it has not been established
which inversion algorithm of the Laplace transform is the most precise.

The objective of this work is twofold: to solve a steady-state three-dimensional advection-
diffusion model with non-Fickian counter-gradient closure via the GIADMT, and to establish
which inversion algorithm of the Laplace transform is the most accurate in this context. Here,
we consider three inversion algorithms, namely, the Gaussian quadrature method [30], the fixed-
Talbot method [1], and a Fourier series-based method [8]. Also, different parametrizations for the
eddy diffusivities, the mean wind velocity profile, and the counter-gradient flux are considered
in the numerical simulations, and the corresponding results are compared to the Copenhagen
experiment dataset [15] via statistical analysis [17] in order to establish which parametrizations
and inversion algorithm provide the most accurate results.

This work is organized as follows: section 2 is devoted to the derivation of the model; in section
3, the formalism of the GIADMT applied to the model is presented including the three inver-
sion algorithms of the Laplace transform; the statistical validation of the model is described for
various parametrizations of the coefficients and the the three inversion algorithms in section 4;
the accuracy of the computational results is discussed in section 5; and concluding remarks are
presented in section 6.

2 PROBLEM STATEMENT

Following [32, 36], the Eulerian approach (i.e. fixed reference system) to air pollution model-
ing is based on the law of conservation of mass for one pollutant species with concentration
c(x,y,z, t):

∂c
∂ t

+u ·∇c−D∆c = S, (2.1)

where (x,y,z)∈R+× [−Ly,Ly]× [0,h] are the spatial coordinates with Ly,h > 0, t is the temporal
coordinate, u is the wind velocity vector field, D is the molecular diffusivity, and S is the pollutant
source.

In order to simplify equation (2.1), Reynolds decompositions are assumed for both the wind
velocity field and the pollutant concentration, so u = ū+ u′ and c = c̄+ c′, where ¯(·) and (·)′

Tend. Mat. Apl. Comput., 19, N. 1 (2018)
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represent the mean and turbulent (i.e. fluctuating) parts, respectively. Such decompositions are
justified by the existence of the so-called spectral gap, which is the lack of variation at temporal
or spatial mesoscales and separates macroscalar mean motions from microscalar turbulent ones
(for further details, see sections 2.2 and 2.3 of [32]). In addition, it is often assumed [32, 36] that
an ergodic hypothesis [2] is satisfied by the turbulence (i.e. it is homogeneous and stationary, both
statistically), so 〈 ¯(·)〉= ¯(·) and 〈(·)′〉= 0, where 〈·〉 denotes the Reynolds average operator [32].
Also, turbulent motions smaller that the mesoscale, as the ones considered here, generally satisfy
the conditions [4] for the so-called incompressibility approximation [16, 32], which produces
the so-called continuity equation for turbulent fluctuations ∇ · u′ = 0, implying that u′ ·∇c′ =
∇ · (c′u′). With such considerations, and by applying the average operator to equation (2.1), it
follows that

∂ c̄
∂ t

+ ū ·∇c̄+∇ · 〈c′u′〉−D∆c̄ = 〈S〉, (2.2)

where 〈c′u′〉 represents the turbulent atmospheric diffusion eddies. Also, as the dispersion effects
of molecular diffusion are several orders of magnitude smaller than the ones corresponding to
the turbulent diffusion eddies, it is possible to neglect term D∆c̄ in equation (2.2) [32, 36].

On the other hand, observe that term 〈c′u′〉 introduces three new unknowns, so equation (2.2)
needs closure. The traditional approach is the so-called K-theory, or gradient-transport theory,
which relies on the so-called Fickian (or first-order local) closure, i.e., 〈c′u′〉=−K∇c̄, where K
is the second-rank tensor field of turbulent diffusion [32, 36]. However, when considering point
sources in unstable atmospheric conditions, the Fickian closure presents major limitations, as its
mixing-length derivation is valid only for statically neutral situations [32]. In order to overcome
such a situation, we consider the nonlocal counter-gradient closure 〈c′u′〉=−K(∇c̄− γ), where
γ is the so-called counter-gradient vector field [10, 11, 12]. With such considerations, and by
assuming that the pollutant is nonreactive, so 〈S〉= S, equation (2.2) becomes

∂ c̄
∂ t

+ ū ·∇c̄−∇ · (K(∇c̄− γ)) = S. (2.3)

Further simplifications of equation (2.3) can be considered. For instance, K is assumed to be a
diagonal tensor with nonzero components Kx, Ky and Kz [36]. Also, as the dominant convective
movements occur in the upward direction, the counter-gradient field γ is usually taken to be
aligned to the z-axis, so γ = (0,0,γ) [11]. In addition, it is considered that the x-axis is aligned
with the wind direction, so that ū = (ū,0,0), and, in consequence, the turbulent diffusion along
the x-axis is negligible in comparison to the corresponding advective transport:∣∣∣∣ū∂ c̄

∂x

∣∣∣∣� ∣∣∣∣ ∂

∂x

(
Kx

∂ c̄
∂x

)∣∣∣∣ , (2.4)

where Kx is the turbulent diffusivity along the x-axis. Also, in presence of a single pollutant
source in steady-state emission regime and atmospheric conditions, we have that ∂ c̄/∂ t = 0 and
the source term S is treated as a boundary condition. With such considerations, equation (2.3)
simplifies to

ū
∂ c̄
∂x
− ∂

∂y

(
Ky

∂ c̄
∂y

)
− ∂

∂ z

(
Kz

(
∂ c̄
∂ z
− γ

))
= 0, (2.5)

Tend. Mat. Apl. Comput., 19, N. 1 (2018)
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where Ky and Kz are the turbulent diffusivities along the y- and z-axes, respectively. Equation
(2.5) is completed with the boundary condition accounting for the pollutant source

ūc̄|x=0 = Qδ (z−Hs)δ (y), (2.6)

where Q is the emission rate of the pollutant source, which is located at point (0,0,Hs), and δ (·)
is Dirac’s delta function, and total reflexion conditions [36]:

Ky
∂ c̄
∂y

∣∣∣∣
y=±Ly

= 0, (2.7)

and

Kz

(
∂ c̄
∂ z
− γ

)∣∣∣∣
z=0,h

= 0. (2.8)

Finally, observe that the counter-gradient term γ is also unknown, so we propose the lin-
ear closure γ = β c̄, which is consistent with various experiment-based parametrizations of γ

[9, 10, 11, 12, 27]. Then, equations (2.5) and (2.8) become, respectively,

ū
∂ c̄
∂x
− ∂

∂y

(
Ky

∂ c̄
∂y

)
− ∂

∂ z

(
Kz

∂ c̄
∂ z

)
+

∂

∂ z
(Kzβ c̄) = 0, (2.9)

and

Kz

(
∂ c̄
∂ z
−β c̄

)∣∣∣∣
z=0,h

= 0. (2.10)

3 MODEL SOLUTION VIA GIADMT

The solution of problem (2.5)-(2.10) is sought via the GIADMT, which applies the GILTT in
variable y to the multilayer problem resulting from the application of the ADMM. This problem
for the coefficients of the eigenfunction series expansion of the approximate solution is then
solved in the Laplace space. Finally, the approximation of the solution of the original problem
follows by applying an inversion algorithm of the Laplace transform.

Following the formalism of the GILTT, the mean pollutant concentration c(x,y,z) is sought as
a Fourier series in terms of the eigenfunctions ψ j(y), where j is the order of the corresponding
eigenvalue λ j, that is,

c(x,y,z) =
∞

∑
j=0

C j(x,z)ψ j(y)∥∥ψ j
∥∥ ,

∥∥ψ j
∥∥2

=
∫ Ly

−Ly

ψ
2
j (y)dy. (3.1)

The eigenvalues λ j and the corresponding eigenfunctions ψ j(y) in (3.1) are obtained by solving
the Sturm-Liouville problem

d2ψ j

dy2 +λ
2
j ψ j(y) = 0,

dψ j

dy

∣∣∣∣
y=±Ly

= 0, (3.2)

which yields ψ j(y) = cos(λ jy), where λ j = jπ/Ly, so ‖ψ j(y)‖=
√

Ly.

Tend. Mat. Apl. Comput., 19, N. 1 (2018)
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The coefficients C j(x,z) of the Fourier series expansion of the mean pollutant concentration
c(x,y,z) are obtained by solving the problems resulting from the substitution of (3.1) into (2.9),
(2.10) and (2.6), and considering the orthogonality of the eigenfunctions:

u
∂C j

∂x
+Kyλ

2
j C j(x,z)−

∂

∂ z

(
Kz

∂C j

∂ z

)
+

∂

∂ z
(KzβC j(x,z)) = 0, (3.3)

Kz

(
∂C j

∂ z
−βC j(x,z)

)∣∣∣∣
z=0,h

= 0, (3.4)

uC j(0,z) =
Q√
Ly

δ (z−Hs). (3.5)

Now, we follow the formalism of the ADMM to find the solution of problem (3.3)-(3.5), that is,
divide the height h of the PBL into N sublayers and then take the local average of coefficients Ky,
Kz, u and β in direction z over each sublayer. Explicitly, let {zn}n=0,N ⊂ [0,h] be a partition of the
PBL. In each sublayer (zn−1,zn), n = 1,N, of thickness ∆zn = zn− zn−1, consider the following
stepwise approximations of u(z), Kτ(z), τ = y,z, and β (z) given by

un =
1

∆zn

∫ zn

zn−1

u(z)dz , Kτn =
1

∆zn

∫ zn

zn−1

Kτ(z)dz , βn =
1

∆zn

∫ zn

zn−1

β (z)dz.

Let C jn(x,z) = C j(x,z) for (x,z) ∈ R∗+ × (zn−1,zn), n = 1,N. Then, problem (3.3)-(3.5) is
approximated by the following ADMM problem:

un
∂C jn

∂x
+Kynλ

2
j C jn(x,z) = Kzn

∂ 2C jn

∂ z2 −Kznβn
∂C jn

∂ z
, z ∈ (zn−1,zn), (3.6)

C jn(x,zn) =C j(n+1)(x,zn), (3.7)

Kzn

[
∂C jn

∂ z
−βnC jn(x,z)

]
z=zn

= Kzn+1

[
∂C j(n+1)

∂ z
−βn+1C j(n+1)(x,z)

]
z=zn

, (3.8)

Kz1

[
∂C j1

∂ z
−β1C j1(x,z)

]
z=0

= KzN

[
∂C jN

∂ z
−βNC jN(x,z)

]
z=h

= 0, (3.9)

C jn(0,z) =
Q

un
√

Ly
δ (z−Hs)δnn̄, z ∈ (zn−1,zn), (3.10)

in which conditions (3.7) and (3.8) follow from the continuity of the pollutant concentration and
the turbulent flux in direction z, respectively, at the partition points z = zn, n = 1,N−1. Also, δnn̄

in boundary condition (3.10) is Kronecker’s delta (δnn̄ = 1 if n = n̄, δnn̄ = 0 if n 6= n̄), and n = n̄
indicates the sublayer (zn̄−1,zn̄) in which the pollutant source is located, that is, Hs ∈ (zn̄−1,zn̄).

Tend. Mat. Apl. Comput., 19, N. 1 (2018)
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By applying the Laplace transform L [·] in direction x to the ADMM problem (3.6)-(3.10), it
follows, for each s ∈ C, the ADMM problem in the Laplace space:

d2ζ jn

dz2 −βn
dζ jn

dz
−

uns+Kynλ 2
j

Kzn

ζ jn(s,z) =−
Q

Kzn

√
Ly

δ (z−Hs)δnn̄, (3.11)

ζ jn(s,zn) = ζ jn+1(s,zn), (3.12)

Kzn

[
dζ jn

dz
−βnζ jn(s,z)

]
z=zn

= Kzn+1

[
dζ jn+1

dz
−βn+1ζ jn+1(s,z)

]
z=zn

, (3.13)

Kz1

[
dζ j1
dz
−β1ζ j1(s,z)

]
z=0

= KzN

[
dζ jN
dz
−βNζ jN (s,z)

]
z=h

= 0, (3.14)

where ζ jn(s,z) = L [C jn(x,z)]. Then, for z ∈ (zn−1,zn), n = 1,N, the solution of the ADMM
problem in the Laplace space (3.11)-(3.14) is

ζ jn(s,z) = A jne(Fn+R jn )z +B jne(Fn−R jn )z+

+
Q

2R jnKzn

√
Ly

[
e(Fn−R jn )(z−Hs)− e(Fn+R jn )(z−Hs)

]
H(z−Hs) , (3.15)

where H(·) is Heaviside function,

Fn =−
βn

2
, R jn =

√
β 2

n

4
+

uns+Kynλ 2
j

Kzn

, (3.16)

and coefficients A jn and B jn in (3.15) are obtained by solving the system of linear equations
resulting from the substitution of (3.15) into conditions (3.12)-(3.14).

Then, the solution of the ADMM problem (3.6)-(3.10) follows from the application of the inverse
Laplace transform L −1[·] to (3.15), so the approximate solution to the original problem (2.5)-
(2.10) is, formally,

c(x,y,z) =
∞

∑
j=0

cos(λ jy)√
Ly

L −1[ζ j](x,z). (3.17)

However, note that the complexity of solution (3.15) requires the numerical inversion of the
Laplace transform, so the final solution is regarded as semi-analytic. In this work, three inver-
sion algorithms are considered, namely, the Gaussian quadrature method [30], the fixed-Talbot
method [1], and a Fourier series-based method [8], in order to establish inversion algorithm pro-
vides the most accurate results. The applications of the three algorithms to (3.15) are described
next:

• Gaussian quadrature method [30]:

cn(x,y,z) =
∞

∑
j=0

cos(λ jy)√
Ly

{
Np

∑
k=1

pkwk

x
ζ jn

( pk

x
,z
)}

, (3.18)

where constants wk and pk are, respectively, the weights and roots of the quadrature.

Tend. Mat. Apl. Comput., 19, N. 1 (2018)
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• Fixed-Talbot method [1]:

cn(x,y,z) =
∞

∑
j=0

cos(λ jy)√
Ly

{
r

M∗

[
1
2

ζ jn(r,z)erx+

+
M∗−1

∑
k=1

Re
[
exS(θk)ζ jn(S(θk),z)(1+ iw(θk))

]]}
, (3.19)

where r is a parameter with value fixed as r = 2M∗/101x, and S(θk) = rθ(cotθ + i),
ω(θk) = θk +(θk cotθk−1)cotθk, θk = kπ/M∗, −π < θk <+π , and i2 =−1.

• Fourier series-based method [8]:

cn(x,y,z) =
∞

∑
j=0

cos(λ jy)√
Ly

eαx

T

[
N∗

∑
k=1

{
Re
[

ζ jn

(
α +

ikπ

T
,z
)

cos
(

kπx
T

)]
−

−Im
[

ζ jn

(
α +

ikπ

T
,z
)

sin
(

kπx
T

)]}
+

1
2

ζ jn(α,z)
]
, (3.20)

where α and T are free parameter taken here as α = 0.0001 and T = 55000.

4 MODEL VALIDATION

In order to validate the semi-analytical approach described above, parametrizations must be pro-
vided for the eddy diffusivities Ky and Kz, the mean wind velocity profile u, and the counter-
gradient coefficient β . The following parametrizations of are valid for the considered atmospheric
convective conditions. For Kz:

• Pleim and Chang [25]:
Kz

w∗h
= κ

z
h

(
1− z

h

)
, (4.1)

where κ = 0.4 is von Kármán constant, and w∗ is the convective velocity scale.

• Degrazia et al. [14]:

Kz

w∗h
= 0.22

( z
h

)1/3(
1− z

h

)1/3 [
1− e−4z/h−0.0003e8z/h

]
, (4.2)

• Degrazia et al. [13]:

Kz

w∗h
=

0.09c1/2
w ψ1/3(z/h)4/3

( f ∗m)
4/3
w

∫
∞

0

sin
[

7.84c1/2
w ψ1/3( f ∗m)

2/3
w Xn

(z/h)2/3

]
(1+n′)5/3

dn′

n′
, (4.3)

where ψ = 1.26exp(−z/0.8h) is the non-dimensional molecular dissipation rate associ-
ated to the plume production, cv,w = 0.4, n′ = n̂(1.5z/u( f ∗m)w) with frequency n̂, X is
the non-dimensional time as it is the travel time rate x/u and the convective time scale
h/w∗, ( f ∗m)w = z/(λm)w is the spectral peak non-dimensional frequency, and (λm)w =

1.8h[1− exp(−4z/h)− 0.0003exp(8z/h)] is the wavelength associated to the maximum
of the turbulent vertical spectrum.

Tend. Mat. Apl. Comput., 19, N. 1 (2018)
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Also, for Ky, we use the following parametrization:

• Degrazia et al. [14]:

Ky =

√
πσvz

16( fm)vqv
, (4.4)

with

σ
2
v =

0.98cv

( fm)
2/3
v

(
ψε

qv

)2/3( z
h

)2/3
w2
∗ , (4.5)

ψ
1/3
ε =

[(
1− z

L

)2(
− z

L

)−2/3
+0.75

]1/2

, (4.6)

where u∗ is the friction velocity, L is the Monin-Obukhov length, σv is the standard de-
viation of the longitudinal turbulent velocity, ( fm)v = 0.16 is the lateral wave peak, ψε is
the non-dimensional molecular dissipation rate, qv = 4.16z/h is the stability function, and
cv = 0.4.

For the wind velocity profile u, we use the two parametrization by Panofsky and Dutton [24]:

• Power-law profile:

u = u1

(
z
z1

)p

, (4.7)

where u and u1 are wind velocities at heights z and z1, respectively, whereas p is related to
the intensity of the turbulence [18].

• Logarithmic profile:

u =

{
(u∗/κ) [ln(z/z0)−Ψm (z/L)] , z≤ zb

(u∗/κ) [ln(zb/z0)−Ψm (zb/L)] , z > zb
, (4.8)

where z0 is the roughness length of the terrain, zb = min[|L|,0.1h] and, with
A = [1−16(z/L)]1/4, Ψm is the stability function

Ψm = ln
(

1+A2

2

)
+ ln

(
1+A

2

)2

−2arctanA+
π

2
. (4.9)

For the counter-gradient coefficient β , we use the following two parametrization.

• Cuijpers and Holtslag [9]:

β =
bw2
∗

σ2
wh

, (4.10)

with constant b and the vertical standard deviation of the turbulent velocity σw [29]:

σ
2
w = 1.8

( z
h

)2/3(
1− z

h

)2/3
w2
∗. (4.11)
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• Roberti et al. [27]:

β = 0.085
qw

Ψh

(
h
z

)2/3

, (4.12)

with non-dimensional dissipation Ψ = 0.913, and qw is the stability function

qw = z
[
0.594h

(
1− e−4z/h−0.0003e8z/h

)]−1
. (4.13)

Model validation is carried out by comparing the simulation results to the Copenhagen experi-
ment observations [15]. This experiment consisted of releasing sulfur hexafluoride (SF6) from a
source of height h = 115m and emission rate Q = 100g/s. Nine experiments were carried out
under moderately unstable atmospheric conditions, and data were collected at arches located at
2−6km from the source. The roughness length is z0 = 0.6m. The comparison is performed via
statistical analysis using the following indexes [17]:

• Normalized mean square error:

NMSE = (Co−Cp)2/CoCp (ideal:NMSE = 0)

• Correlation coefficient:

Cor = [(Co−Co)(Cp−Cp)]/σoσp (ideal:Cor = 1)

• Factor of two:

Fa2 =Cp/Co ∈ [0.5,2] (ideal:Fa2 = 1)

• Fractional bias:

Fb = (Co−Cp)/(0.5(Co +Cp)) (ideal:Fb = 0)

• Fractional standard deviation:

Fs = (σo−σp)/(0.5(σo +σp)) (ideal:Fs = 0)

where subscripts o and p denote the experimentally observed and computationally predicted
quantities, respectively, σ is the standard deviation, and the overbar represents the mean value.

5 RESULTS

The numerical methods inversion of the Laplace transform, require parameter choices that have
direct impact on the performance, e.g. the number of terms in the Fourier series (N∗), the number
of terms in the Fixed-Talbot expansion (M∗), and the number of points used for the Gaussian
quadrature (N p).

In order to determine the choice of such parameters was analysed of the computational cost that
each method takes to determine the pollutant concentration given by the equation (3.17). For
these tests, was utilized the power wind profile, diffusion coefficient Kz of equation (4.3), term
of the counter-gradient of (4.10), micrometeorological parameters of the third arc of experiment

Tend. Mat. Apl. Comput., 19, N. 1 (2018)
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3 of Copenhagen [15]; y = 0 and z = 0. The value of the concentration observed in this arc is
Co = 3.76.

Table 1 shows the time that each inversion method took to calculate the concentration, the value
of the concentration obtained in each calculation and the number of eigenvalues required for
GITT, and the criterion of the truncation of the sum of GITT is absolute error less than 10−2.

Table 1: Computational cost comparison of each inversion method.

Method Parameter

FT
M*=100 M*=200 M*=500 M*=1000

Time Cp Na Time Cp Na Time Cp Na Time Cp Na
70,67 3,27 31 115,30 3,27 26 648,22 3,27 62 1383,73 3,27 67

FS
N*=100 N*=200 N*=500 N*=1000

Time Cp Na Time Cp Na Time Cp Na Time Cp Na
72,86 3,60 31 141,88 3,82 32 342,81 3,72 32 741,24 3,73 32

GQ

Np=4 Np=8 Np=10
Time Cp Na Time Cp Na Time Cp Na
9,76 5,42 38 11,99 3,82 32 13,11 3,52 31

Np=12 Np=16 Np=20
Time Cp Na Time Cp Na Time Cp Na
14,41 3,50 31 17,02 3,64 31 20,09 3,75 31

Analyzing the table (1), it can be seen that the fixed-Talbot method has equal values of Cp inde-
pendent of the number of expansion terms, in addition, the calculated value for Cp is very close
to Co, but it is a method that takes more time to perform the calculations because it needs many
eigenvalues. The higher the value of M∗, the more eigenvalues are required. Thus, comparing
accuracy/cost, M∗ = 100 is sufficient to calculate the concentration values.

The Fourier series-based method presents small changes in the values of Cp by increasing the
number of terms in the series, moreover, the values calculated for Cp are also very close to Co.
This method takes less time to perform the calculations than the fixed-Talbot method, because it
does not need as many eigenvalues as the fixed-Talbot method. Thus, N∗ = 100 is sufficient to
calculate the concentration values.

The Gaussian quadrature method is the fastest method to perform the calculations of Cp, but it
is not due to the number of eigenvalues but because the number of points used in the present
work is a maximum of twenty. The values calculated for Cp vary according to the value of Np

chosen, in addition, not always have values close to Co. It can be seen in Stroud-Secrest [30]
that the magnitude of the real part of the root of the Gaussian quadrature scheme for the inverse
Laplace transform increases with Np (the order of the approximation). Since the solution to the
concentration with the Laplace transform has exponential terms, one can readily observe that
from the numerical simulation ”overflow” appears for the positive exponential argument and
”underflow” for the negative argument when Np assumes very high values. It is important to
note that the calculations were performed on an Intel Core i3, 2.53GHz, 3Gb (RAM) computer.
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Consequently, to avoid overflow and underflow, the values of Np were restricted to values around
twenty. Thus, N p = 8 is sufficient to calculate the concentration values.

Once the parameters of each inversion method have been determined, the table (2) shows the
statistical indexes of the approximate solutions (3.18), (3.19) and (3.20) considering all the
parametrizations for the eddy diffusivities Ky (equation (4.4)) and Kz (equations (4.1), (4.2) and
(4.3)), the wind velocity profile (equations (4.7) and (4.8)), and the counter-gradient coefficient
β with β1 and β2 denoting the parametrizations in equations (4.10) and (4.12), respectively. The
corresponding computational experiments were performed by truncating the concentration series
expansion in equations (3.18), (3.19) and (3.20) after 150 terms.

Table 2: Statistical indexes.

Kz Inversion NMSE Cor Fa2 Fb Fs
u method β1 β2 β1 β2 β1 β2 β1 β2 β1 β2

Gauss 0.34 0.42 0.811 0.814 0.739 0.696 0.31 0.40 0.10 0.17
1 Talbot 0.36 0.37 0.820 0.823 0.783 0.739 0.35 0.36 0.15 0.17

Fourier 0.26 0.32 0.834 0.838 0.826 0.826 0.24 0.32 0.05 0.13
Gauss 0.30 0.36 0.808 0.811 0.783 0.739 0.24 0.33 0.02 0.10

2 Talbot 0.31 0.32 0.815 0.819 0.783 0.783 0.28 0.29 0.08 0.10
Fourier 0.24 0.28 0.830 0.834 0.826 0.826 0.18 0.26 -0.02 0.06
Gauss 0.31 0.39 0.840 0.846 0.783 0.739 0.31 0.41 0.14 0.22

3 Talbot 0.36 0.37 0.841 0.844 0.783 0.783 0.37 0.38 0.21 0.23
Fourier 0.25 0.31 0.853 0.860 0.826 0.739 0.26 0.35 0.10 0.19
Gauss 0.26 0.33 0.834 0.841 0.826 0.696 0.24 0.34 0.05 0.15

4 Talbot 0.30 0.31 0.837 0.840 0.826 0.783 0.30 0.32 0.13 0.15
Fourier 0.22 0.26 0.847 0.855 0.826 0.826 0.19 0.28 0.03 0.12
Gauss 0.22 0.25 0.853 0.855 0.826 0.826 0.20 0.27 0.06 0.11

5 Talbot 0.22 0.22 0.860 0.863 0.826 0.826 0.22 0.23 0.07 0.08
Fourier 0.17 0.19 0.871 0.873 0.913 0.870 0.13 0.19 -0.02 0.03
Gauss 0.19 0.22 0.851 0.854 0.913 0.913 0.13 0.20 -0.02 0.04

6 Talbot 0.20 0.19 0.856 0.859 0.913 0.913 0.16 0.17 0.00 0.01
Fourier 0.17 0.17 0.867 0.869 0.957 0.913 0.07 0.19 -0.09 -0.04

logarithmic u, Kz of (4.1); 2 power-law u, Kz of (4.1); 3 logarithmic u, Kz of (4.2);
4 power-law u, Kz of (4.2); 5 logarithmic u, Kz of (4.3); 6 power-law u, Kz of (4.3).

It is observed in the table (2) that the three inversion algorithms studied provide results with
similar precision for all parametrizations, since the values of all the statistical indices are close
to the ideal values. These three methods are used to calculate the inverse of Laplace in this
context of estimating the concentration of pollutants in the atmosphere. However, we can say
that the Fourier series-based inversion algorithm produces better results even when comparing
the computational effort with the other methods.

Figure 1 shows scatter plots of the observed pollutant concentrations (Co) from the Copenhagen
experiment versus the predicted concentrations (Cp) for the power-law wind velocity profile
(equation (4.7)), the vertical eddy diffusivity from equation (4.3) and the two counter-gradient
coefficients in equations (4.10) and (4.12) via the three inversion algorithms. It is observed that
the differences between the inversion algorithms of the Laplace transform are minimal. All the
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computational experiment showed that the scatter plots in Figure 1 are representative of all the
other parametrizations.

Cuijpers and Holtslag (1998) Roberti et al. (2004)

Figure 1: Scatter plots for power-law wind and Kz of [13].

6 CONCLUSIONS

We presented the solution of the steady-state three-dimensional advection-diffusion equation
with linear nonlocal closure via the GIADMT with two different parametrizations of the counter-
gradient coefficient. Three numerical inversion algorithms of the Laplace transform were eval-
uated: the Gaussian quadrature method, the fixed-Talbot method, and a Fourier series-based
method. The use of non-local closure allowed to model satisfactorily the pollutant concentrations
of the Copenhagen experiment independently of the choice of parametrizations and inversion al-
gorithms. The statistical indexes showed that the accuracies of the three algorithms were similar,
but the Fourier series-based method was the least expensive from the computational point of
view.
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RESUMO. Neste trabalho apresenta-se a resolução da equação de advecção-difusão tridi-
mensional estacionária obtida através da técnica GIADMT (Generalized Integral Advection
Diffusion Multilayer Technique), considerando o fechamento não-local linear para o fluxo
turbulento. Foram consideradas duas parametrizações diferentes para o coeficiente do termo
do contragradiente e utilizados três diferentes métodos de inversão numérica para a trans-
formada inversa de Laplace. Comparou-se os resultados com os dados medidos no experi-
mento de Copenhagen através de uma avaliação dos ı́ndices estatı́sticos a fim de comparar
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a solução da equação através dos métodos de inversão numérica. Ainda, foram utilizados
diferentes parametrizações para o coeficiente de difusão turbulento vertical e o perfil do
vento. Os resultados apresentaram uma boa concordância com o experimento e os métodos
de inversão numérica para a transformada de Laplace apresentaram preaticamente a mesma
precisão, sendo que o método baseado na série de Fourier foi o mais acurado dos três algo-
ritmos. Por outro lado, o método de fixed-Talbot foi o que mostrou o melhor desempenho
do ponto de vista computacional.

Palavras-chave: Fechamento não-local, inversão numérica, dispersão de poluentes.
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[13] G. A. Degrazia, D. M. Moreira & M. T. Vilhena. Derivation of an eddy diffusivity depending on source
distance for vertically inhomogeneous turbulence in a convective boundary layer, J. Appl. Meteor.,
(2001), 1233–1240.

[14] G. A. Degrazia, U. Rizza, C. Mangia & T. Tirabassi. Validation of a new turbulent parameterization
for dispersion models in convective conditions, Boundary-Layer Meteor., 85(2) (1997), 243–254.

[15] S. E. Gryning & E. Lyck. The Copenhagen Tracer Experiments: Reporting of Measurements. Riso
National Laboratory, (2002).

[16] S. R. Hanna, G. A. Briggs & R. P. Hosker Jr. Handbook on Atmospheric Diffusion. U. S. Department
of Energy, (1982).

[17] S. R. Hanna. Confidence limits for air quality models, as estimated by bootstrap and jackknife
resampling methods. Atmos. Environ., 23 (1989), 1385–1395.

[18] J. S. Irwin. A theoretical variation of the wind profile power-law exponent as a function of surface
roughness and stability. Atmos. Environ., 13(1) (1979), 191–194.

[19] D. M. Moreira, U. Rizza, M. T. Vilhena & A. Goulart. Semi-analytical model for pollution dispersion
in the planetary boundary layer. Atmos. Environ., 39(14) (2005), 2689–2697.

[20] D. M. Moreira, M. T. Vilhena, T. Tirabassi, C. P. Costa & B. Bodmann. Simulation of pollutant dis-
persion in the atmosphere by the Laplace transform: The ADMM approach, Water, Air, Soil Pollut.,
77(1) (2006), 411–439.

[21] D. M. Moreira, M. T. Vilhena, D. Buske & T. Tirabassi. The state-of-art of the GILTT method to
simulate pollutant dispersion in the atmosphere, Atmos. Res., 92(1) (2009), 1–17.

[22] D. M. Moreira, M. T. Vilhena, T. Tirabassi, D. Buske & C. P. Costa. Comparison between analytical
models to simulate pollutant dispersion in the atmosphere. Int. J. Environ. Waste Manag., 6, No. 3-4
(2010), 327–344.

[23] D. M. Moreira, A. C. Moraes, A. G. Goulart & T. T. A. Albuquerque. A contribution to solve the
atmospheric diffusion equation with eddy diffusivity depending on source distance, Atmos. Environ.,
83 (2014), 254–259.

[24] A. H. Panofsky & A. J. Dutton. Atmospheric Turbulence, John Wiley & Sons, New York, 1984.

[25] J. Pleim & J. Chang. A non-local closure model for vertical mixing in the convective boundary layer,
Atmos. Environ., 26A(6) (1992), 965–981.

[26] L. Prandtl. Bericht über Untersuchungen zur ausgebildeten Turbulenz, Z. angew. Math. Mech., 5(2)
(1925), 136–139.

[27] D. R. Roberti, H. F. Campos Velho & G. A. Degrazia. Identifing counter-gradient term in atmospheric
convective boundary layer. Inverse Probl. Sci. Eng., 12(3) (2004), 329–339.

[28] K. Rui & C. P. Costa. Comparison of different numerical algorithms for the inverse Laplace transform
in the advection-diffusion equation, (2017) (submitted).

Tend. Mat. Apl. Comput., 19, N. 1 (2018)



i
i

“A4˙1008” — 2018/5/3 — 16:58 — page 58 — #16 i
i

i
i

i
i

58 ADVECTION-DIFFUSION EQUATION WITH NON-LOCAL CLOSURE

[29] Z. Sorbjan. Structure of the Atmospheric Boundary Layer. Prentice Hall, (1989).

[30] A. H. Stroud & D. Secrest. Gaussian Quadrature Formulas. Prentice Hall, Inc., Englewood Cliffs, N.
J., (1966).

[31] R. B. Stull. Transilient turbulence theory. Part 1: The concept of eddy mixing across finite distances,
J. Atmos. Sci., 41(23) (1984), 3351–3367.

[32] R. B. Stull. An Introduction to Boundary Layer Meteorology. Kluwer Academic Publishers, Dordrecht,
Holanda, (1988).

[33] H. van Dop & G. Verver. Countergradient transport revisited. J. Atmos. Sci., 58(15) (2001), 2240–
2247.

[34] S. Wortmann, M. T. Vilhena, D. M. Moreira & D. Buske. A new analytical approach to simulate the
pollutant dispersion in the PBL. Atmos. Environ., 39(12) (2005), 2171–2178.

[35] J. Wyngaard & J. Weil. Transport asymmetry in skewed turbulence. Phys. Fluids A, 3(1) (1991),
155–162.

[36] P. Zannetti. Air Pollution Modeling: Theories, Computational Methods and Available Software.
Springer, New York, (1990).

Tend. Mat. Apl. Comput., 19, N. 1 (2018)


